Sáng kiến kinh nghiệm Một số phương pháp giải bài Toán mạch cầu điện trở

1. Lý do chọn đề tài

Bài toán về mạch cầu điện trở là một nội dung quan trọng thường gặp trong chuyên đề BDHSG phần điện học. Thông thường HS nắm chắc quy tắc chuyển mạch và vận dụng làm tốt các bài tập về quy tắc chuyển mạch từ đơn giản đến phức tạp, tuy nhiên khi gặp bài toán về mạch cầu thì HS gặp phải khó khăn lúng túng không thể tóm tắt được mạch điện để tìm điện trở tương đương của mạch cũng như tìm các đại lượng khác (U, I) trong mạch. Đặc biệt khi trong mạch cầu có sự tham gia của ampe kế hay vôn kế thì việc tính toán số chỉ của ampe kế và vôn kế cũng như biện luận giá trị của các điện trở để số chỉ của ampe kế và vôn kế đạt một giá trị xác định cho trước là một bài toán phức tạp đối với HS. Vì vậy, việc tổng hợp, khái quát thành phương pháp giải đối với bài toán mạch cầu điện trở là một chìa khoá giúp HS biến bài toán mạch cầu phức tạp thành những bài toán đơn giản, có lối đi riêng một cách rõ ràng, từ đó dễ dàng vận dụng vào giải các bài tập trong chuyên đề điện học. Việc nắm vững phương pháp giải bài toán mạch cầu điện trở sẽ giúp HS làm tốt các bài toán có liên quan đến mạch cầu, đồng thời nâng cao chất lượng bồi dưỡng chuyên đề điện học nói riêng cũng như chất lượng đội tuyển HSG vật lí nói chung.

Với những lí do trên, tôi chọn đề tài "Một số phương pháp giải bài toán mạch cầu điện trở".

2. Mục đích nghiên cứu

Tìm ra phương pháp để giải bài toán tìm điện trở tương đương của mạch cầu, tìm các đại lượng U, I của mỗi điện trở trong mạch. Phương pháp giải bài toán về mạch cầu dây phục vụ công việc học tập chuyên đề điện học của HS trong đội tuyển HSG môn vật lí nhằm góp phần nâng cao chất lượng đội tuyển.

3. Khách thể, đối tượng và phạm vi nghiên cứu

Khách thể : nội dung, chương trình, phương pháp dạy học và quá trình bồi dưỡng HSG.

Đối tượng : Các bài tập về mạch cầu trong chuyên đề điện học.

Phạm vi : chỉ dừng lại ở việc nghiên cứu và khai thác một số bài tập cơ bản trong nội dung chương trình bồi dưỡng HSG vật lí; các bài tập về mạch cầu cân bằng, không cân bằng, mạch cầu dây.

 

doc21 trang | Chia sẻ: lacduong21 | Lượt xem: 2314 | Lượt tải: 3Download
Bạn đang xem 20 trang mẫu của tài liệu "Sáng kiến kinh nghiệm Một số phương pháp giải bài Toán mạch cầu điện trở", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
ông yêu cầu, thì trong quá trình giải các bài tập điện ta vẫn thường phải tiến hành công việc này. Với các mạch điện thông thường, thì đều có thể tính điện trở tương đương bằng một trong hai cách sau.
+ Nếu biết trước các giá trị điện trở trong mạch và phân tích được sơ đồ mạch điện thành các đoạn mắc nối tiếp, các đoạn mắc song song thì áp dụng công thức tính điện trở của các đoạn mắc nối tiếp hay các đoạn mắc song song.
+ Nếu chưa biết hết các giá trị của điện trở trong mạch, nhưng biết được Hiệu điện thế ở 2 đầu đoạn mạch và cường độ dòng điện qua đoạn mạch đó, thì có thể tính điện trở tương đương của mạch bằng công thức định luật Ôm.
- Tuy nhiên với các mạch điện phức tạp như mạch cầu, thì việc phân tích đoạn mạch này về dạng các đoạn mạch mới nối tiếp và song song là không thể được. Điều đó cũng có nghĩa là không thể tính điện trở tương đương của mạch cầu bằng cách áp dụng các công thức tính điện trở của đoạn mạch mắc nối tiếp hay đoạn mạch mắc song song. Vậy ta phải tính điện trở tương đương của mạch cầu bằng cách nào?
* Với mạch cầu cân bằng thì ta bỏ qua điện trở R5 để tính điện trở tương đương của mạch cầu.
* Với loại mạch cầu có một trong 5 điện trở bằng 0, ta luôn đưa được về dạng mạch điện có các đoạn mắc nối tiếp, mắc song song để giải.
* Loại mạch cầu tổng quát không cân bằng thì điện trở tương đương được tính bằng các phương pháp sau:
2.2.1 - Phương pháp chuyển mạch:
- Thực chất là chuyển mạch cầu tổng quát về mạch điện tương đương (điện trở tương đương của mạch không thay đổi). Mà với mạch điện mới này ta có thể áp dụng các công thức tính điện trở của đoạn mạch nối tiếp, đoạn mạch song song để tính điện trở tương đương.
- Muốn sử dụng phương pháp này trước hết ta phải nắm được công thức chuyển mạch (chuyển từ mạch sao thành mạch tam giác và ngược lại từ mạch tam giác thành mạch sao). Công thức chuyển mạch:
+ Cho hai sơ đồ mạch điện, mỗi mạch điện được tạo thành từ ba điện trở 
 (Hình 5 mạch tam giác (D)) (Hình 6 - Mạch sao (Y)
Với các giá trị thích hợp của điện trở có thể thay thế mạch này bằng mạch kia, khi đó hai mạch tương đương nhau. Công thức tính điện trở của mạch này theo mạch kia khi chúng tương đương nhau như sau:
* Biến đổi từ mạch tam giác R1, R2, R3 thành mạch sao R’1, R’2, R’3
	(1)	
	(2)	
	(3)	
(ở đây R’1, R’2, R’3 lần lượt ở vị trí đối diện với R1, R2, R3)
* Biến đổi từ mạch sao R’1, R’2, R’3 thành mạch tam giác R1, R2, R3 
	(4)
	(5)
	(6)
(Do giới hạn không cho phép, nên đề tài này chỉ được ra công thức mà không chứng minh công thức đó !).
- áp dụng vào bài toán tính điện trở tương đương của mạch cầu ta có hai cách chuyển mạch như sau:
* Cách 1: Từ sơ đồ mạch cầu tổng quát ta chuyển mạch tam giác R1, R3, R5 thành mạch sao: R’1; R’3; R’5 (Hình 7). Trong đó các điện trở R13, R15, R35 được xác định theo công thức: (1); (2) và (3) từ sơ đồ mạch điện mới ta có thể áp dụng công thức tính điện trở của đoạn mạch mắc nối tiếp, đoạn mạch mắc song song để tính điện trở tương đương của mạch AB, kết quả là: (Hình 7)
* Cách 2: Từ sơ đồ mạch cầu tổng quát ta chuyển mạch sao R1, R2 , R5 thành mạch tam giác R’1; R’2; R’5 (Hình 8). Trong đó các điện trở R’1; R’2; R’5 được xác định theo công thức (4), (5) và (6) từ sơ đồ mạch điện mới, áp dụng công thức tính điện trở tương đương ta cũng được kết quả là: (Hình 8) 
2.2.2 - Phương pháp dùng công thức định luật Ôm:
Từ biểu thức: (*)
Trong đó: U là hiệu điện thế ở hai đầu đoạn mạch.
 I là cường độ dòng điện qua mạch chính.
Vậy theo công thức (*) nếu muốn tính điện trở tương đương (R) của mạch thì trước hết ta phải tính I theo U, rồi sau đó thay vào công thức (*) sẽ được kết quả. (có nhiều phương pháp tính I theo U sẽ được trình bày chi tiết ở mục sau).
* Ví dụ minh hoạ:
Cho mạch điện như hình vẽ.(Hình 9). Biết R1 = R3 = R5 = 3 W; R2 = 2 W; R4 = 5 W
a) Tính điện trở tương đương của đoạn mạch AB? 
b) Đặt vào hai đầu đoạn AB một hiệu điện thế không đổi U = 3 (V). Hãy tính cường độ dòng điện qua các điện trở và hiệu điện thế ở hai đầu mỗi điện trở? (Hình 9)
* Lời giải
a) Tính RAB = ?
- Phương pháp 1: Chuyển mạch.
+ Cách 1: Chuyển mạch tam giác R1;R3 ;R5 thành mạch sao R’1; R’3; R’5 (Hình 10)
Ta có: 
Điện trở tương đương của đoạn mạch AB là : 	 (Hình 10)
= 3 W
+ Cách 2: Chuyển mạch sao R1; R2; R5 thành mạch tam giác (Hình 11)
Ta có: 
Điện trở tương đương của đoạn mạch AB là: (Hình 11)
-Phương pháp 2: Dùng công thức định luật Ôm.
Từ công thức:
 (*)
Gọi U là hiệu điện thế ở hai đầu đoạn mạch AB; I là cường độ dòng điện qua đoạn mạch AB. Biểu diễn I theo U, Đặt I1 là ẩn số, giả sử dòng điện trong mạch có chiều đi từ C đến D (Hình 9). Ta lần lượt có:
U1 = I1. R1 = 3I1	 	(1)
U2 = U - U1 = U - 3I1	 	(2)
I2 = 	(3)
I5 = I1 - I2 = I1 - = 	(4)
U5 = I5.R5 = ().3 = 	 	(5)
U3 = U1 + U5 = 3I1 + = 	(6)
I3 = = = 	(7)
U4 = U - U3 = U - = 	(8)
I4 = = = 	(9)
+ Tại nút D cho biết: I4 = I3 + I5 = + 	(10)
 I1 = 	(11)
+ Thay (11) vào (7) I3 = 
+ Cường độ dòng điện trên mạch chính: I = I1 + I3 = + = 	(12)
+ Thay (12) vào (*) ta được = 3
b) Thay U = 3V vào phương trình (11) ta được: 
Thay U = 3(V) và I1 = vào các phương trình từ (1) đến (9) ta được kết quả:
I2 = ; ; ; 
( có chiều từ C đến D, ngược với chiều đã chọn)
; ; ; ; 
* Lưu ý: 
Cả hai phương pháp giải trên đều có thể áp dụng để tính điện trở tương đương của bất kỳ mạch cầu điện trở nào. Mỗi phương pháp giải đều có những ưu điểm và nhược điểm của nó. Tuỳ từng bài tập cụ thể mà ta lựa chọn phương pháp giải cho hợp lý.
+ Nếu bài toán chỉ yêu cầu tính điện trở tương đương của mạch cầu (chỉ câu hỏi a) thì áp dụng phương pháp chuyển mạch để giải, bài toán sẽ ngắn gọn hơn.
+ Nếu bài toán yêu cầu tính cả các giá trị dòng điện và hiệu điện thế (hỏi thêm câu b) thì áp dụng phuơng pháp thứ hai để giải bài toán, bao giờ cũng ngắn gọn, dễ hiểu và lôgic hơn.
+ Trong phương pháp thứ 2, việc biểu diễn I theo U liên quan trực tiếp đến việc tính toán các đại lượng cường độ dòng điện và hiệu điện thế trong mạch cầu. Đây là một bài toán không hề đơn giản mà ta rất hay gặp trong khi giải các đề thi học sinh giỏi, thi tuyển sinh. Vậy có những phương pháp nào để giải bài toán tính cường độ dòng điện và hiệu điện thế trong mạch cầu.
2.3 Phương pháp giải bài toán tính cường độ dòng điện và hiệu điện thế trong mạch cầu.
2.3.1 Với mạch cầu cân bằng hoặc mạch cầu không cân bằng mà có 1 trong 5 điện trở bằng 0 (hoặc lớn vô cùng) thì đều có thể chuyển mạch cầu đó về mạch điện quen thuộc (gồm các đoạn mắc nối tiếp và mắc song song). Khi đó ta áp dụng định luật Ôm để giải bài toán này một cách đơn giản.
Ví dụ:
Cho các sơ đồ các mạch điện như hình vẽ: (Hình 12a); (Hình 13a); (Hình 14a); (Hình 15a) biết các vôn kế và các am pe kế là lý tưởng.
(Hình 12a) (Hình 13a)
(Hình 14a) (Hình 15a)
Ta có thể chuyển các sơ đồ mạch điện trên thành các sơ đồ mạch điện tương đương, tương ứng với các hình (Hình 12b); (Hình 13b); (Hình 14b); (Hình 15b)
(Hình 12b) (Hình 13b)
(Hình 14b) (Hình 15b)
Từ các sơ đồ mạch điện mới, ta có thể áp dụng định luật Ôm để tìm các đại lượng mà bài toán yêu cầu:
* Lưu ý:
Các bài tập loại này có nhiều tài liệu đã trình bày, nên trong đề tài này không đi sâu vào việc phân tích các bài toán đó tuy nhiên trước khi giảng dạy bài toán về mạch cầu tổng quát, nên rèn cho học sinh kỹ năng giải các bài tập loại này thật thành thạo.
2.3.2 Với mạch cầu tổng quát không cân bằng có đủ cả 5 điện trở, ta không thể đưa về dạng mạch điện gồm các đoạn mắc nối tiếp và mắc song song. Do đó các bài tập loại này phải có phương pháp giải đặc biệt. Sau đây là một số phương pháp giải cụ thể:
	Phương pháp 1:
Lập hệ phương trình có ẩn số là dòng điện (Chẳng hạn chọn I1 làm ẩn số)	Bước 1: Chọn chiều dòng điện trên sơ đồ
Bước 2: áp dụng định luật ôm, định luật về nút, để biễu diễn các đại lượng còn lại theo ẩn số (I1) đã chọn (ta được các phương trình với ẩn số I1)
Bước 3: Giải hệ các phương trình vừa lập để tìm các đại lượng của đầu bài yêu cầu.
Bước 4: Từ các kết quả vừa tìm được, kiểm tra lại chiều dòng điện đã chọn ở bước 1
+ Nếu tìm được I > 0, giữ nguyên chiều đã chọn.
+ Nếu tìm được I < 0, đảo ngược chiều đã chọn.
* Ví dụ minh hoạ:
Cho mạch điện như hình vẽ (Hình 16).
Biết U = 45V; R1 = 20W; R2 = 24W; R3 = 50W ; R4 = 45W; R5 = 30W. 
Tính cường độ dòng điện và hiệu điện thế của mỗi điện trở và tính điện trở tương đương của mạch AB?	 	(Hình 16)
Lời giải:
- Giả sử dòng điện trong mạch có chiều như hình vẽ, dòng điện qua R5 đi từ C đến D.
- Chọn I1 làm ẩn số ta lần lượt có:
U1 = I1.R1 = 20I1	(1)
U2 = U - U1 = 45 - 20I1	(2)
I2 = 	(3)
I5 = I1 - I2 = I1 - = 	(4)
U5 = I5.R5 = ().30 = 	(5)
U3 = U1 + U5 = 20I1 + = (6)
I3 = = = 	(7)
U4 = U - U3 = 45 - = 	(8)
I4 = = = 	(9)
- Tại nút D cho biết: I4 = I3 + I5 = + (10)
 120I1 = 126 I1 = 1,05 (A)
- Thay I1 = 1,05 (A) vào các phương trình từ (1) đến (9) ta được các kết quả:
I2 = 1(A)	I3 = 0,45 (A)
I4 = 0,5 (A)	I5 = 0,05 (A)
Vậy chiều dòng điện đã chọn là đúng.
+ Hiệu điện thế 
U1 = 21(V)	U2 = 24 (V)
U3 = 22,5 (V)	U4 = 22,5 (V)
U5 = 1,5 (V)
+ Điện trở tương đương
Phương pháp 2:
 Chuyển mạch sao thành mạch tam giác (hoặc mạch tam giác thành mạch sao). Chẳng hạn chuyển mạch tam giác R1 , R3 , R5 thành mạch sao R’1 , R’3 , R’5 ta được sơ đồ mạch điện tương đương (Hình 17). (Lúc đó các giá trị RAB, I1, I4, I, U2, U4 , UCD vẫn không đổi). Các bước tiến hành giải như sau: 
Bước 1: Vẽ sơ đồ mạch điện mới. 	(Hình 17)
Bước 2: Tính các giá trị điện trở mới (sao R’1 , R’3 , R’5)	
Bước 3: Tính điện trở tương đương của mạch
Bước 4: Tính cường độ dòng điện mạch chính (I)
Bước 5: Tính I2, I4 rồi suy ra các giá trị U2, U4.
Ta có: Và: I4 = I - I2
Bước 6: Trở lại mạch điện ban đầu để tính các đại lượng còn lại.
*áp dụng làm ví dụ minh hoạ trên:
- Từ sơ đồ mạch điện (Hình 17) ta có
- Điện trở tương đương của mạch: 
- Cường độ dòng điện trong mạch chính: 
Suy ra: = 1 (A) I4 = I - I2 = 1,5 - 1 = 0,5 (A)
U2 = I2.R2 = 24 (V) ; 	U4 = I4.R4 = 22,5 (V)
- Trở lại sơ đồ mạch điện ban đầu (Hình 16) ta có kết quả:
Hiệu điện thế 	:	U1 = U - U2 = 21 (V)
U3 = U - U4 = 22,5(V) 
U5 = U3 - U1 = 1,5 (V)
Và các giá trị dòng điện
; ; 	I5 = I1 - I2 = 0,05 (A)
2.4 Bài toán mạch cầu dây:
- Mạch cầu dây là mạch điện có dạng như Hình 18. Trong đó hai điện trở R3 và R4 có giá trị thay đổi khi con chạy C dịch chuyển dọc theo chiều dài của biến trở (R3 = RAC; R4 = RCB)	
- Mạch cầu dây được ứng dụng để đo điện trở của một vật dẫn.
	(Hình 18)
- Các bài tập về mạch cầu dây rất đa dạng, phức tạp và phổ biến trong chương trình Vật lý nâng cao lớp 9 và lớp 11.
Vậy sử dụng mạch cầu dây để đo điện trở như thế nào? Và phương pháp để giải bài tập về mạch cầu dây như thế nào?
2.4.1 Phương pháp đo điện trở của vật dẫn bằng mạch cầu dây:
Bài toán: 
Để đo giá trị của điện trở Rx người ta dùng một điện trở mẫu R0, một biến trở ACB có điện trở phân bố đều theo chiều dài, và một điện kế nhạy G, mắc vào mạch như hình vẽ. Di chuyển con chạy C của biến trở đến khi điện kế G chỉ số 0 đo l1 ; l2 ta được kết quả: 	
 hãy giải thích phép đo này?
Hướng dẫn: 
Trên sơ đồ mạch điện, con chạy C chia biến trở (AB) thành hai phần.
+ Đoạn AC có chiều dài l1, điện trở là R1
+ Đoạn CB có chiều dài l2, điện trở là R2
Điện kế cho biết khi nào có dòng điện chạy qua đoạn dây CD. Nếu điện kế chỉ số 0, thì mạch cầu cân bằng, ta có: 
 	(1)	
- Vì đoạn dây AB là đồng chất, có tiết diện đều nên điện trở từng phần được tính theo công thức.
 và Do đó: 	(2)	
- Thay (2) vào (1) ta được kết quả:	
	Chú ý: Đo điện trở của vật dẫn bằng phương pháp trên cho kết quả có độ chính xác rất cao và đơn giản nên được ứng dụng rộng rãi trong phòng thí nghiệm
2.4.2 Các bài toán thường gặp về mạch cầu dây:
Bài toán 1: 
Cho mạch điện như hình vẽ. Điện trở của ampe kế và dây nối không đáng kể, cho biết điện trở toàn phần của biến trở R .
a) Tìm vị trí của con chạy C khi biết số chỉ của ampe kế (IA)
b) Biết vị trí con chạy C, tìm số chỉ của ampe kế?
* Phương pháp giải:	
Vì điện trở của ampe kế không đáng kể -> mạch điện (R1//RAC) nt (R2 // RCB)
a) Đặt x = RAC 	(0 < x < R)
* Trường hợp 1: Nếu bài toán cho biết số chỉ của ampe kế IA = 0 thì mạch cầu cân bằng, lúc đó ta có điều kiện cân bằng.
	(1)
Giải phương trình (1) ta sẽ tìm được RAC = x
* Trường hợp 2: Am pe kế chỉ giá trị IA ạ 0
Viết phương trình dòng điện cho hai nút C và D. Rồi áp dụng định luật ôm để chuyển hai phương trình đó về dạng có ẩn số là U1 và x.
+ Tại nút C:
 = = 	(2)
+ Tại nút D: 	IA = ờI1 - I2ờ = 	(3)
(Trong đó các giá trị U, Ia, R, R1, R2 đầu bài cho trước )
- Xét chiều dòng điện qua ampe kế (nếu đầu bài không cho trước), để giải phương trình (3) tìm giá trị U1, rồi thay vào phương trình (2) để tìm x.
- Từ giá trị của x ta tìm được vị trí tương ứng con chạy C.
b) Vì đầu bài cho biết vị trí con chạy C, nên ta xác định được điện trở RAC và RCB
- Mạch điện: (R1// RAC ) nt (R2 //RCB)
-> áp dụng định luật ôm ta dễ dàng tìm được I1 và I2.
Suy ra số chỉ của Ampe kế: IA = ờI1 - I2 ờ
* Ví dụ minh hoạ:
Cho mạch điện như hình vẽ. Biết U = 7V không đổi. R1 = 3W; R2= 6W. Biến trở ACB là một dây dẫn có điện trở suất là = 4.106(W m). Chiều dài l = AB = 1,5m, tiết diện đều s = 1mm2
a) Tính điện trở toàn phần của biến trở.
b) Xác định vị trí con chạy C để số chỉ của ampe kế bằng 0?
c) Con chạy C ở vị trí mà AC = 2CB, hỏi lúc đó ampe kế chỉ bao nhiêu?
d) Xác định vị trí con chạy C để ampe kế chỉ (A)
Lời giải
a) Điện trở toàn phần của biến trở
(W)
b) Ampe kế chỉ số 0 thì mạch cầu cân bằng, khi đó ta có
 	(Đặt x = RAC -> RCB = 6 - x) x = 2 (W)
Với RAC = x = 2W thì con chạy C ở cách A một đoạn bằng 
Vậy khi con chạy C cách A một đoạn bằng 0,5m thì ampe kế chỉ số 0
c) Khi con chạy ở vị trí mà AC = 2CB, ta tính được RAC = 4 (W); RCB = 2 (W)
vì RA = 0 => Mạch điện (R1 //RAC ) nt (R2 //RCB)
- Điện trở tương đương của mạch
 (W)
- Cường độ dòng điện trong mạch chính
Suy ra:	 
Vì: 	 I1 > I2, suy ra số chỉ của ampe kế là:
 = 0,7 (A)
Vậy khi con chạy C ở vị trí mà AC = 2CB thì ampe kế chỉ 0,7 (A)
d) Tìm vị trí con chạy C để ampe kế chỉ (A)
- Vì: RA = 0 => mạch điện (R1// RAC) nt (R2 // RCB)
suy ra: Ux = U1
+ Phương trình dòng điện tại nút C:
 = 	(1)
+ Phương trình dòng điện tại nút D:
	= 	(2)
- Trường hợp 1: Ampe kế chỉ IA = (A) dòng điện đi từ D đến C
+ Từ phương trình (2) ta tìm được U1 = 3 (V)
+ Thay U1 = 3 (V) vào phương trình (1) ta tìm được x = 3 (W)
Với RAC = x = 3 W ta tìm được vị trí của con chạy C cách A một đoạn AC = 75m
- Trường hợp 2: Ampe kế chỉ IA = (A) dòng điện đi từ C đến D
+ Từ phương trình (2) ta tìm được U1 
+ Thay U1 vào phương trình (1) ta tìm được x ằ 1,16 (W)
Với RAC = x = 1,16W ta tìm được vị trí của con chạy C cách A một đoạn AC= 29cm
+ Vậy tại các vị trí mà con chạy C cách A một đoạn bằng 75 (cm) hoặc bằng 29 (cm) thì ampe kế chỉ .
Bài toán 2:
Cho mạch điện như hình vẽ. Hiệu điện thế ở hai đầu đoạn mạch là U không đổi. Biến trở có điện trở toàn phần là R. Vôn kế có điện trở rất lớn.	
a) Tìm vị trí con chạy C, khi biết số chỉ của vôn kế
b) Biết vị trí con chạy C, tìm số chỉ của vôn kế?
* Phương pháp giải:
Vì vôn kế có điện trở rất lớn nên mạch điện có dạng (R1 nt R2) // RAB
a) Tìm vị trí con chạy C
Với mọi vị trí của C, ta luôn tìm được: và	 
Xét hai trường hợp: UAC = U1 + UV và UAC = U1 - UV
Mỗi trường hợp ta luôn có: 
Từ giá trị của RAC ta tìm được vị trí tương ứng của con chạy C.
b) Biết vị trí con chạy C, ta tìm được RAC; RCB và tính được U1 và UAC từ đó tính chỉ số của vôn kế: 	
* Ví dụ minh hoạ:
Cho mạch điện như hình vẽ. Biết V = 9V không đổi, R1 = 3W; R2 = 6W. Biến trở ACB có điện trở toàn phần là R= 18W. Vôn kế là lý tưởng.
a) Xác định vị trí con chạy C để vôn kế chỉ số 0 
b) Xác định vị trí con chạy C để vôn kế chỉ 1 vôn
c) Khi RAC = 10W thì vôn kế chỉ bao nhiêu vôn ?
Lời giải
- Vì vôn kế là lý tưởng nên mạch điện có dạng: (R1 nt R2) // RAB
a) Để vôn kế chỉ số 0, thì mạch cầu phải cân bằng, khi đó:
 => RAC = 6 (W)
b) Xác định vị trí con chạy C để Uv = 1(V)
Với mọi vị trí của con chạy C, ta luôn có
Và	 
+ Trường hợp 1: Vôn kế chỉ: UV = U1 - UAC = 1V UAC = U1 - UV = 3 - 1 = 2V
=> RAC = (W)
+ Trường hợp 2: Vôn kế chỉ UV = UAC - U1 = 1V UAC = U1 + UV = 3 + 1 = 4V
=> = 8 (W)
Vậy tại vị trí mà RAC = 4 (W) hoặc RAC = 8 (W) thì vôn kế chỉ 1 (V)
c) Tìm số chỉ vôn kế, khi RAC = 10 (W)
Khi RAC = 10(W) => RCB = 18 - 10 = 8 (W)
=> UAC = IAC . RAC = 0,5 .10 = 5 (V)
Số chỉ của vôn kế là: UV = UAC - U1 = 5 - 3 = 2 (V)
Vậy khi RAC = 10W thì vôn kế chỉ 2(V)
c- Kết qủa nghiên cứu và ứng dụng của đề tài:
Qua thời gian giảng dạy và bồi dưỡng học sinh giỏi, tôi nhận thấy yếu tố quan trọng nhất để nâng cao chất lượng học sinh đó là phương pháp giảng dạy của giáo viên. Trong đó đối với việc dạy bồi dưỡng học sinh giỏi thì một vấn đề đặc biệt quan trọng là giáo viên phải xây dựng được một hệ thống phương pháp giải bài tập cho từng loại bài. Có vậy học sinh mới hiểu và nắm vững một cách tổng quát về kiến thức, trên cơ sở đó các em mới có thể tự học, tự nghiên cứu tài liệu và có hứng thú học tập, biết tự lực, chủ động, tự tin làm tốt bài thi.
Đây là đề tài đã được xây dựng qua quá trình bản thân trực tiếp nghiên cứu và vận dụng vào dạy bồi dưỡng học sinh giỏi. Do đó đây là những vấn đề rất thiết thực và có tính ứng dụng cao. Mỗi nội dung trong đề tài mang tính chất khái quát cao và đã được giải quyết một cách cụ thể, chi tiết. Chính vì vậy đây không chỉ đơn thuần là những kiến thức, những phương pháp để áp dụng cho việc giải các bài tập về mạch cầu điện trở và hệ thống các tính chất quan trọng của mạch cầu điện trở. Do đó việc giảng dạy theo nội dung của đề tài này sẽ không chỉ giúp học sinh có một hệ thống phương pháp giải bài tập, mà quan trọng hơn là các em nắm được bản chất vật lí và các mối quan hệ của những đại lượng vật lý (U, I, R) trong mạch cầu điện trở.
Mặc dù đây là một chuyên đề rộng và khó, song qua quá trình vận dụng đề tài này vào thực tế tôi nhận thấy tất cả các học sinh đều tiếp thu nhanh và vận dụng tốt các phương pháp đó vào việc giải các bài tập về mạch cầu.
d- triển vọng của đề tài:
Bài tập về mạch cầu là một nội dung rất rộng và khó. Bởi lý do các phương pháp để giải loại bài tập này đòi hỏi phải vận dụng một lượng kiến thức tổng hợp và nâng cao. Đối với học sinh lớp 9 thì việc nắm được những bài tập như vậy là rất khó khăn. Tôi nghĩ rằng, để học sinh có thể hiểu một cách sâu sắc và hệ thống về từng loại bài tập thì nhất thiết trong qúa trình giảng dạy giáo viên phải phân loại các dạng bài tập và xây dựng các phương pháp giải cụ thể cho từng loại bài. Đặc biệt đối với các bài tập về mạch cầu, đây không chỉ là nội dung quan trọng trong chuyên đề bồi dưỡng học sinh giỏi Vật lý lớp 9 mà các bài tập này sẽ được tiếp tục nghiên cứu nhiều hơn ở chương trình vật lý lớp 11 và 12. Do đó đây chính là nền tảng vững chắc để các em có thể học tốt môn vật lí ở cấp THPT.
Đề tài này chỉ xây dựng phương pháp giải bài tập cho một mảng nhỏ trong số các dạng bài tập nâng cao của vật lí lớp 9. Tuy nhiên, bằng phương pháp tương tự, trong qúa trình giảng dạy mỗi giáo viên đều có thể xây dựng các phương pháp giải cho tất cả các loại bài tập còn lại.
Đây chính là phương pháp tốt nhất để mỗi giáo viên có thể tự bồi dưỡng chuyên môn cho mình và đây cũng là biện pháp tốt nhất để nâng cao chất lượng dạy học.
e- kết luận:
Việc phân loại và xây dựng các phương pháp giải bài tập Vật lí bao giờ cũng là vấn đề khó khăn nhất đối với tất cả các giáo viên dạy môn Vật lí. Song đây là công việc nhất thiết phải làm thì mới mang lại hiệu quả cao trong quá trình dạy học.
Qua quá trình nghiên cứu và giảng dạy môn vật lí, cùng với sự học hỏi kinh nghiệm từ đồng nghiệp tôi đã mạnh dạn xây dựng đề tài này. Do thời gian có hạn, đề tài này không tránh khỏi những khiếm khuyết cần phải sửa chữa, bổ sung. Rất mong sự đóng góp ý kiến của các cấp lãnh đạo và của các bạn đồng nghiệp để đề tài của tôi được hoàn thiện tốt hơn.
Tôi xin chân thành cảm ơn./.
Kiến Giang, ngày 20 tháng 11 năm 2009
 	 	 Tác giả
 	Nguyễn Anh Minh

File đính kèm:

  • docMot_so_PP_giai_bai_toan_Mach_cau_dien_tro..doc
Sáng Kiến Liên Quan