Sáng kiến kinh nghiệm Giúp học sinh giải tốt bài toán rút về đơn vị
Mỗi môn học ở tiểu học đều góp phần vào việc hình thành và phát triển những cơ sở ban đầu rất quan trọng ở nhân cách con người. Trong các môn học ở tiểu học cùng với môn Tiếng Việt, môn Toán có vị trí rất quan trọng vì: Các kiến thức, kĩ năng của môn Toán có rất nhiều ứng dụng trong cuộc sống, chúng rất cần thiết cho người lao động, rất cần thiết để học các môn học khác và học tiếp Toán ở Trung học. Các kiến thức, kĩ năng của môn Toán ở tiểu học được hình thành chủ yếu bằng thực hành, luyện tập và thường xuyên được ôn tập, củng cố, phát triển, vận dụng trong học tập và trong đời sống.
Như chúng ta đã biết, căn cứ vào sự phát triển tâm, sinh lí của học sinh Tiểu học mà cấu trúc nội dung môn Toán rất phù hợp với từng giai đoạn phát triển của học sinh. Ở lớp 3, các em được học các kiến thức, kĩ năng ở thời điểm kết thúc của giai đoạn 1, chuẩn bị học tiếp giai đoạn sau, cho nên các em phải nắm được chắc tất cả các cơ sở ban đầu về giải toán nói riêng, tất cả các kĩ năng khác nói chung. Đặc biệt, ở lớp 3 sang học kì II, các em bắt đầu được làm quen với các dạng toán hợp cơ bản, trong đó có dạng toán liên quan rút về đơn vị. Dạng toán này có rất nhiều ứng dụng trong thực tế, nó đòi hỏi các em phải có kĩ năng giải toán tốt, kĩ năng ứng dụng thực tế trong hàng ngày. Sau khi dạy giải toán ở lớp 3 hai năm liền, tôi thấy các em nắm được kĩ năng giải toán của giáo viên truyền đạt tới như là một văn bản của lí thuyết, còn nó có ứng dụng vào thực tế như thế nào đó thì chưa cần biết. Đó là điều băn khoăn, suy nghĩ cho chúng ta. Có những bài toán các em làm xong, không cần thử lại, không cần xem thực tế áp dụng trong thực tế như thế nào, cứ để kết quả như vậy mặc dù có thể sai. Đó là những tác hại lớn khi học toán. Xuất phát từ tình hình thực tế học sinh như vậy, tôi mong muốn có những sáng kiến về phương pháp giúp các em giải toán dạng toán có liên quan đến rút về đơn vị ở lớp 3. đến thời điểm này, tôi đã nghiên cứu xong, sau đây tôi sẽ trình bày để các đồng chí đóng góp ý kiến với đề tài: “Giúp các em học sinh lớp 3 giải tốt bài toán liên quan đến rút về đơn vị”.
SÁNG KIẾN KINH NGHIỆM: “GIÚP HỌC SINH GIẢI TỐT BÀI TOÁN RÚT VỀ ĐƠN VỊ” PHẦN I : ĐẶT VẤN ĐỀ I/MỤC ĐÍCH: Mỗi môn học ở tiểu học đều góp phần vào việc hình thành và phát triển những cơ sở ban đầu rất quan trọng ở nhân cách con người. Trong các môn học ở tiểu học cùng với môn Tiếng Việt, môn Toán có vị trí rất quan trọng vì: Các kiến thức, kĩ năng của môn Toán có rất nhiều ứng dụng trong cuộc sống, chúng rất cần thiết cho người lao động, rất cần thiết để học các môn học khác và học tiếp Toán ở Trung học. Các kiến thức, kĩ năng của môn Toán ở tiểu học được hình thành chủ yếu bằng thực hành, luyện tập và thường xuyên được ôn tập, củng cố, phát triển, vận dụng trong học tập và trong đời sống. Như chúng ta đã biết, căn cứ vào sự phát triển tâm, sinh lí của học sinh Tiểu học mà cấu trúc nội dung môn Toán rất phù hợp với từng giai đoạn phát triển của học sinh. Ở lớp 3, các em được học các kiến thức, kĩ năng ở thời điểm kết thúc của giai đoạn 1, chuẩn bị học tiếp giai đoạn sau, cho nên các em phải nắm được chắc tất cả các cơ sở ban đầu về giải toán nói riêng, tất cả các kĩ năng khác nói chung. Đặc biệt, ở lớp 3 sang học kì II, các em bắt đầu được làm quen với các dạng toán hợp cơ bản, trong đó có dạng toán liên quan rút về đơn vị. Dạng toán này có rất nhiều ứng dụng trong thực tế, nó đòi hỏi các em phải có kĩ năng giải toán tốt, kĩ năng ứng dụng thực tế trong hàng ngày. Sau khi dạy giải toán ở lớp 3 hai năm liền, tôi thấy các em nắm được kĩ năng giải toán của giáo viên truyền đạt tới như là một văn bản của lí thuyết, còn nó có ứng dụng vào thực tế như thế nào đó thì chưa cần biết. Đó là điều băn khoăn, suy nghĩ cho chúng ta. Có những bài toán các em làm xong, không cần thử lại, không cần xem thực tế áp dụng trong thực tế như thế nào, cứ để kết quả như vậy mặc dù có thể sai. Đó là những tác hại lớn khi học toán. Xuất phát từ tình hình thực tế học sinh như vậy, tôi mong muốn có những sáng kiến về phương pháp giúp các em giải toán dạng toán có liên quan đến rút về đơn vị ở lớp 3. đến thời điểm này, tôi đã nghiên cứu xong, sau đây tôi sẽ trình bày để các đồng chí đóng góp ý kiến với đề tài: “Giúp các em học sinh lớp 3 giải tốt bài toán liên quan đến rút về đơn vị”. Dựa trên thực trạng dạy và học môn Toán ở lớp 3 nói chung, dạy học sinh giải bài toán liên quan đến rút về đơn vị nói chung, tôi muốn đưa ra một số ý kiến đổi mới để giúp các em nắm chắc được cách giải dạng toán này một cách sâu sắc, tránh không còn bị nhầm lẫn, giúp các em nắm vững bài và yêu thích môn Toán hơn. Từ đó các em có vốn kĩ năng tính toán chính xác ở những lúc cần thiết trong cuộc sống, tránh được những sai sót có thể xảy ra. Tạo cho các em có tác phong học tập và làm việc có suy nghĩ, có kế hoạch, có kiểm tra, có tinh thần hợp tác, độc lập và sáng tạo, có ý chí vượt khó khăn, cẩn thận, kiên trì, tự tin. II/ THỰC TRẠNG CỦA DẠY VÀ HỌC: Trong nhiều năm theo dõi học sinh học Toán, đặc biệt là hai năm gần đây, tôi trực tiếp theo dõi các em học sinh lớp 3 giải toán nói riêng, tôi thấy các em có một thói quen không tốt cho lắm đó là: đọc đầu bài qua loa, sau đó giải bài toán ngay, làm xong không cần kiểm tra lại kết quả, cho nên, khi trả bài các em mới biết là mình sai. đối với dạng toán này, khi giáo viên hướng dẫn xong kiểu bài 1, các em làm bài khá tốt, ít nhầm lẫn, nhưng còn sai nhiều trong tính toán, đến khi dạy xong kiểu bài 2, các em làm bài có phần nhầm lẫn nhiều hơn, nhiều em thực hiện ở các bước 2 đáng lẽ là phép chia thì các em lại làm phép nhân ( giống ở kiểu bài 1). ở năm học 2008-2009, tôi chưa triển khai phương pháp dạy của mình tới giáo viên dạy khối 3, song tôi đã để ý, quan sát các em làm bài ở lớp mỗi khi dự giờ, thăm lớp, các em đã có sự nhầm lẫn đáng tiếc xảy ra. Để nắm được thực trạng học sinh lớp 3 giải dạng toán này cụ thể như thế nào, tôi đã tiến hành ra hai bài toán, thuộc hai kiểu bài của dạng toán này như sau rồi nhờ giáo viên khối 3 cho các em làm bài trong thời gian là 20 phút để nắm được kết quả. *Bài toán 1: Một cửa hàng có 6 bao gạo chứa được 36 kg gạo. Hỏi 4 bao gạo như thế có thể chứa được bao nhiêu ki lô gam gạo? * Bài toán 2: Có 42 lít dầu đựng vào 6 can. Hỏi có 84 lít dầu thì cần có bao nhiêu can như thế để đựng? Sau khi chấm bài, tôi nhận thấy kết quả các em làm bài như sau: - Có nhiều em làm đúng cả 2 bài. - Một số em làm nhầm ở bước 2 từ kiểu bài 1 sang kiểu bài 2 và ngược lại. Một số em có tính sai. Còn một vài em sai cả 2 bài. * Nguyên nhân có kết quả như vậy là do phần lớn các em còn chủ quan khi làm bài, chưa nhớ kĩ các phương pháp giải dạng toán này. Mặt khác, cũng có thể là các em chưa được củng cố rõ nét về 2 kiểu bài trong dạng toán này nên sự sai đó không tránh khỏi. Con nữa, đây là các bài toán áp dụng rất thực tế mà các em quên mất phương pháp thử lại nên kết quả đưa ra rất đáng tiếc. PHẦN II: GIẢI QUYẾT VẤN ĐỀ 1/Hướng dẫn học sinh nắm chắc phương pháp chung để giải các bài toán: Mỗi bài toán các em có làm tốt được hay không đều phụ thuộc vào các phương pháp giải toán được vận dụng ở mỗi bước giải bài toán đó. Cho nên, chúng ta cần hướng dẫn học sinh nắm được các bước giải bài toán như sau: * Bước 1: Đọc kĩ đề toán. * Bước 2: Tóm tắt đề toán. * Bước 3: Phân tích bài toán. * Bước 4: Viết bài giải. * Bước 5: Kiểm tra lời giải và đánh giá cách giải. Cụ thể yêu cầu đối với học sinh như sau: a/ Đọc kĩ đề toán: Học sinh đọc ít nhất 3 lần mục đích để giúp các em nắm được ba yếu tố cơ bản. Những “ dữ kiện” là những cái đã cho, đã biết trong đầu bài, “những ẩn số” là những cái chưa biết và cần tìm và những “điều kiện” là quan hệ giữa các dữ kiện với ẩn số. Cần tập cho học sinh có thói quen và từng bước có kĩ năng suy nghĩ trên các yếu tố cơ bản của bài toán, phân biệt và xác định được các dữ kiện và điều kiện cần thiết liên qua đến cái cần tìm, gạt bỏ các tình tiết không liên quan đến câu hỏi, phát hiện được các dữ kiện và điều kiện không tường minh để diễn đạt một cách rõ ràng hơn. Tránh thói quen xấu là vừa đọc xong đề đã làm ngay. b/ Tóm tắt đề toán: Sau khi đọc kĩ đề toán, các em biết lược bớt một số câu chữ, làm cho bài toán gọn lại, nhờ đó mối quan hệ giữa cái đã cho và một số phải tìm hiện rõ hơn. Mỗi em cần cố gắng tóm tắt được các đề toán và biết cách nhìn vào tắt ấy mà nhắc lại được đề toán. Thực tế có rất nhiều cách tóm tắt bài toán, nếu các em càng nắm được nhiều cách tóm tắt thì các em sẽ càng giải toán giỏi. Cho nên, khi dạy tôi đã truyền đạt các cách sau tới học sinh: * Cách 1: Tóm tắt bằng chữ. * Cách 2: Tóm tắt bằng chữ và dấu. * Cách 3: Tóm tắt bằng sơ đồ đoạn thẳng. * Cách 4: Tóm tắt bằng hình tượng trưng. * Cách 5: Tóm tắt bằng lưu đồ. * Cách 6: Tóm tắt bằng sơ đồ Ven. * Cách 7: Tóm tắt băng kẻ ô. Tuy nhiên tôi luôn luôn hướng các em chọn cách nào cho hiểu nhất, rõ nhất, điều đó còn phụ thuộc vào nội dung từng bài. c/ Phân tích bài toán: Sau khi tóm tắt đề bài xong, các em tập viết phân tích đề bài để tìm ra cách giải bài toán. Cho nên, ở bước này, giáo viên cần sử dụng phương pháp phân tích và tổng hợp, thiết lập cách tìm hiểu, phân tích bài toán theo sơ đồ dưới dạng các câu hỏi thông thường: Bài toán cho biết gì? - Bài toán hỏi gì? - Muốn tìm cái đó ta cần biết gì? - Cái này biết chưa? - Còn cái này thì sao? - Muốn tìm cái chưa biết ta cần dựa vào đâu? Làm như thế nào? Hướng dẫn học sinh phân tích xuôi rồi tổng hợp ngược lên, từ đó các em nắm bài kĩ hơn, tự các em giải được bài toán. d/ Viết bài giải: Dựa vào sơ đồ phân tích, quá trình tìm hiểu bài, các em sẽ dễ dàng viết được bài giải một cách đầy đủ, chính xác. Giáo viên chỉ việc yêu cầu học sinh trình bày đúng, đẹp, cân đối ở vở là được, chú ý câu trả lời ở các bước phải đầy đủ, không viết tắt, chữ và số phải đẹp. e/ Kiểm tra lời giải và đánh giá cách giải: Qua quá trình quan sát học sinh giải toán, chúng ta dễ dàng thấy rằng học sinh thường coi bài toán đã giải xong khi tính ra đáp số hay tìm được câu trả lời. Khi giáo viên hỏi: “ Em có tin chắc kết quả là đúng không?” thì nhiều em lúng túng. Vì vậy việc kiểm tra , đánh giá kết quả là không thể thiếu khi giải toán va phải trở thành thói quen đối với học sinh. Cho nên khi dạy giải toán, chúng ta cần hướng dẫn các em thông qua các bước: - Đọc lại lời giải. - Kiểm tra các bước giải xem đã hợp lí yêu cầu của bài chưa, các câu văn diễn đạt trong lời giải đúng chưa. - Thử lại các kết quả vừa tính từ bước đầu tiên. - Thử lại kết quả đáp số xem đã phù hợp với yêu cầu của đề bài chưa. Đối với học sinh giỏi, giáo viên có thể hướng các em nhìn lại toàn bộ bài giải, tập phân tích cách giải, động viên các em tìm các cách giải khác, tạo điều kiện phát triển tư duy linh hoạt, sáng tạo, suy nghĩ độc lập của học sinh. 2/ Hướng dẫ học sinh nắm chắc phương pháp giải bài toán liên quan đến rút về đơn vị bằng phép tính chia ,nhân ( kiểu bài 1): Để học sinh nắm chắc phương pháp giải kiểu bài toán này, tôi đã tiến hành dạy ngay ở trên lớp theo phương pháp và hình thức sau: a/ Kiểm tra bài cũ: Để nhắc lại kiến thức cũ và chuẩn bị cho kiến thức mới cần truyền đạt, tôi ra đề như sau: “Mỗi can chứa được 5 lít mật ong. Hỏi 7 can như vậy chứa được bao nhiêu lít mật ong?” Với bài này, học sinh dễ dàng giải được như sau: Bài giải. Bảy can như vậy chứa được số lít mật ong là: 5 x 7 = 35 ( l) Đáp số: 35 l mật ong. Sau đó, tôi yêu cầu học sinh nhận dạng toán đã học và giải thích cách làm, đồng thời cho học sinh nhắc lại quy trình của giải một bài toán. b/ Bài mới: * Giới thiệu bài: Dựa vào bài toán kiểm tra bài cũ, giáo viên vừa củng cố, vừa giới thiệu bài ngày hôm nay các em được học. * Hướng dẫn học sinh giải bài toán 1: Có 35 l mật ong chia đểu vào 7 can. Hỏi mỗi can có mấy lít mật ong? - Giáo viên yêu cầu học sinh đọc đầu bài( 3 em). - Hướng dẫn học sinh tóm tắt bài toán ( sử dụng phương pháp hỏi đáp): + Bài toán cho biết gì? (35 lít mật ong đổ đều vào 7 can). + Bài toán hỏi gì? ( 1 can chứa bao nhiêu lít mật ong). + Giáo viên yêu cầu học sinh nêu miệng phần tóm tắt để giáo viên ghi bảng: 7 can: 35 l 1 can:? l . - Hướng dẫn học sinh phân tích bài toán để tìm phương pháp giải bài toán. - Giáo viên yêu cầu học sinh làm vào bảng con. - Giáo viên đưa bài giải đối chiếu. Bài giải Số lít mật ong có trong mỗi can là: 35 : 7 = 5 (l) Đáp số: 5 l mật ong. - Giáo viên củng cố cách giải: Để tìm 1 can chứa bao nhiêu lít mật ong ta làm phép tính gì? ( phép tính chia). - Giáo viên giới thiệu. Bài toán cho ta biết số lít mật ong có trong 7 can, yêu cầu chúng ta tìm số lít mật ong trong 1 can, để tìm được số lít mật ong trong 1 can, chúng ta thực hiện phép chia. Bước này gọi là rút về đơn vị, tức là tìm giá trị của một phần trong các phần. - Giáo viên cho học sinh nêu miệng kết quả một số bài toán đơn giản để áp dụng, củng cố như: 5 bao: 300kg hoặc 3 túi : 15 kg 1 bao? kg 1 túi : ? kg * Hướng dẫn học sinh giải bài toán 2: Có 35 lít mật ong cia đèu vào 7 can. Hỏi 2 can có mấy lít mật ong? - Giáo viên yêu cầu học sinh đọc kĩ đầu bài ( 3 lần). - Yêu cầu học sinh nêu tóm tắt bài toán – Giáo viên ghi bảng( Phương pháp hỏi đáp). 7 can : 35 lít 2 can : ? lít. - Hướng dẫn học sinh phân tích bài toán: ( Phương pháp hỏi đáp) + Muốn tính được số lít mật ong có trong 2 can ta phải biết gì? ( 1 can chứa được bao nhiêu lít mật ong) +Làm thế nào để tìm được số lít mật ong có trong 1 can? ( Lấy số lít mật ong trong 7 can chia cho 7). + Yêu cầu học sinh nhẩm ngay 1 can: ? l. + Yêu cầu học sinh nêu cách tính 2 can khi đã biết 1 can. (Lấy số lít mật ong có trong 1 can nhân với 2). - Một học sinh nêu lần lượt bài giải. Giáo viên ghi bảng. Bài giải Số lít mật ong có trong mỗi can là: 35 : 7 = 5 (l) Số lít mật ong có trong 2 can là: 5 x 2 = 10 (l) Đáp số:10l mật ong. - Yêu cầu học sinh nêu bước nào là bước rút về đơn vị: Bước tìm số lít mật ong trong 1 can gọi là bước rút về đơn vị. - Hướng dẫn học sinh củng cố dạng toán – kiểu bài 1: Các bài toán có liên quan đến rút về đơn vị thường được giải bằng 2 bước: +Bước 1: Tìm giá trị một đơn vị ( giá trị một phần trong các phần bằng nhau) . Thực hiện phép chia. + Bước 2: Tìm giá trị của nhiều đơn vị cùng loại( giá trị của nhiều phần bằng nhau) . Thực hiện phép nhân. + Học sinh nhẩm thuộc, nêu lại các bước. - Hướng dẫn học sinh làm bài tập áp dụng. - Giáo viên nêu miệng, ghi tóm tắt lên bảng, học sinh nêu kết quả và giải thích cách làm như. 3 túi : 45 kg hoặc : 4 thùng : 20 gói. 12 túi : ? kg. 5 thùng : ? gói. Sau khi học sinh nắm chắc cách giải bài toán ở kiểu bài này, chúng ta cần tiến hành hướng dẫn học sinh luyện tập. c/Luyện tập: Khi tiến hành hướng dẫn học sinh luyện tập qua từng bài, giáo viên cần thay đổi hình thức luyện tập. Bài 1: - Hướng dẫn học sinh thảo luận chung cả lớp, sau đó 1 học sinh tóm tắt và giải bài toán trên bảng, cả lớp làm vào vở. - Củng cố bước rút về đơn vị. - Củng cố các bước giải bài toán này. Bài 2: - Học sinh thảo luận và làm việc theo nhóm đôi. - Yêu cầu 1 cặp học sinh trình bày bảng – Giáo viên kiểm tra các kết quả của cả lớp. - Yêu cầu học sinh nêu bước rút về đơn vị. - Củng cố cách thực hiện 2 bước giải bài toán. Bài 3: Hướng dẫn học sinh chơi trò chơi ghép hình. d/ Củng cố dặn dò: - Học sinh tự nêu các bước, cách thực hiện giải bài toán có liên quan đến rút về đơn vị ( kiểu bài 1) - Giao thêm bài về nhà dạng tương tự để hôm sau kiểm tra. - Qua mỗi lần luyện tập xen kẽ, giáo viên đều củng cố cách làm ở kiểu bài 1 là: + Bài giải được thực hiện qua 2 bước: Bước 1: ( Bước rút về đơn vị) Tìm giá trị 1 đơn vị ( Giá trị 1 phần). ( phép chia). Bước 2: Tìm nhiều đơn vị ( từ 2 trở lên) ( phép nhân). + Nhấn mạnh cốt chính của kiểu bài 1 là tìm giá trị của nhiều đơn vị ( nhiều phần). + Khi học sinh đã nắm chắc kiểu bài 1 thì các em dễ dàng giải được kiểu bài 2. 3/ HIỆU QUẢ MỚI: Trong suốt quá trình day theo phương pháp mới, quan sát học sinh giải toán, tôi thấy các em rất thích giải toán khi các em đã có đủ vốn kiến thức, phương pháp giải toán. Các em giải toán đúng, chính xác hơn khi các em được thầy cô nhiệt tình hướng dẫn với phương pháp dễ hiểu nhất, dễ nhớ nhất. Với phương pháp này tôi đã trang thiết bị cho các em vốn kiến thức phương pháp cơ bản để các em giải dạng toán này không nhầm lẫn, sai sót đến chất lượng học của các em được nâng lên rõ rệt. Dạy xong kiểu bài 1, so với đầu năm học các em làm bài tốt hơn nhiều, chất lượng tăng 20%. Dạy xong kiểu bài 2, chất lượng càng tăng hơn 15% so với thời điểm đầu năm. Nhìn chung, các em được giải toán, so sánh cách giải của 2 kiểu bài này, cho nên các em làm bài chính xác cao, chất lượng khả quan. Kết quả đó cho chúng ta thấy được có phương pháp tốt thì học sinh làm bài tốt hơn. Chất lượng học của học sinh không tự dưng mà có được, mà đòi hỏi mỗi người giáo viên chúng ta biết phương pháp truyền đạt tới từng đối tượng học sinh. Nhiều đồng chí cho rằng dạng toán này dễ. Song, không hẳn như vậy, nếu chúng ta truyền đạt kiến thức, phương pháp hời hợt thì các em dễ dàng nhầm lẫn ở bước 2 của 2 kiểu bài đó, cũng có khi nhầm cả sang dạng toán khác. Cho nên dạy toán ở dạng toán này, chúng ta càng cẩn thận, chi tiết bao nhiêu thì chất lượng tiếp thu và làm bài càng tăng lên, các em học toán tự tin hơn. PHẦN III. NHỮNG BÀI HỌC KINH NGHIỆM: I.SÁNG KIẾN CỤ THỂ: Đây là sáng kiến tìm giải pháp hợp lý hóa phương pháp dạy học các dạng toán Rút về đơn vị. tìm các biện pháp lôi cuốn học sinh tự phát hiện và giải quyết vấn đề bằng cách hướng dẫn học sinh tìm hiểu kĩ năng vấn đề đó, huy động các kiến thức và các công cụ đã có để tìm ra con đường hợp lí nhất giải đáp từng câu hỏi đặt ra trong qua trình giải quyết vấn đề, diễn đạt các bước đi trong cách giải, tự mình kiểm tra lại các kết quả đã đạt được, cùng các bạn rút kinh nghiệm về phương pháp giải. II. SỬ DỤNG SÁNG KIẾN: Dạy toán ở Tiểu học nói chung, ở lớp 3 nói riêng là cả một quá trình kiên trì, đầy sự sáng tạo, nhất là đối với dạng toán liên quan đến rút về đơn vị, cho nên khi hướng dẫ học sinh giải toán nói chung, giải dạng toán liên quan đến rút về đơn vị nói riêng chúng ta cần phải: 1/ Tạo niềm hứng thú, sự say mê giải toán, bởi các em có thích học toán thì các em mới có sự suy nghĩ, tìm tòi các phương pháp giải bài toán một cách thích hợp. 2/ Hướng dẫn học sinh nắm đầy đủ các kĩ năng cần thiết khi giải toán bằng phương pháp phù hợp, nhẹ nhàng, không gò bó. 3/ Kích thích tư duy sáng tạo, khả năng phân tích, tổng hợp trong khi tìm tòi, phát hiện đường lối trong giải toán. 4/ Thường xuyên thay đổi hình thức dạy học ở mỗi bài để tránh sự nhàm chán. 5/ Tập cho học sinh có kĩ năng tự phân tích bài toán, tự kiểm tra đánh giá kết quả của bài toán, tập đặt các câu hỏi gợi mở cho các bước giải trong bài toán. 6/ Phải coi việc giải toán là cả một quá trình, không nóng vội mà phải kiên trì tìm và phát hiện ra “ chỗ hổng” sau mỗi lần hướng dẫn để khắc phục, rèn luyện. 7/ Nên động viên, khuyến khích các em có đưa ra phương pháp giải gần hợp lí, tránh đưa ra tình huống phủ định ngay. 8/ Gần gũi, động viên những em học yếu môn Toán để các em có tiến bộ, giúp đỡ nhẹ nhàng khi cần thiết. III. Kết luận chung: Sáng kiến đưa ra một số ý kiến đổi mới để giúp các em nắm chắc được cách giải dạng toán này một cách sâu sắc, tránh không còn bị nhầm lẫn, giúp các em nắm vững bài và yêu thích môn Toán hơn. Từ đó các em có vốn kĩ năng tính toán chính xác ở những lúc cần thiết trong cuộc sống, tránh được những sai sót có thể xảy ra. Tạo cho các em có tác phong học tập và làm việc có suy nghĩ, có kế hoạch, có kiểm tra, có tinh thần hợp tác, độc lập và sáng tạo, có ý chí vượt khó khăn, cẩn thận, kiên trì, tự tin. Kính mong các cấp quản lý giáo dục, các bạn đồng nghiệp nghiên cứu vày dạy thử nghiệm và góp ý xây dựng cho sáng kiến hoàn thiện và có thể đưa vào giảng dạy. Tôi xin chân thành cám ơn! Ngũ Lão, ngày 10 tháng 11 năm 2012 Người viết Mã Thị Hồng
File đính kèm:
- sang_kien.doc