SKKN Rèn kỹ năng giải Toán điển hình ở Lớp 4

Trong chương trình toán ở tiểu học, việc giải các bài toán chiếm một vị trí

rất quan trọng. Được thể hiện qua các khái niệm toán học, các quy tắc toán học đều

được giảng dạy thông qua giải toán. Việc giải toán giúp học sinh củng cố vận dụng

các kiến thức, rèn luyện kĩ năng tính toán . Đồng thời qua việc giải toán cho học

sinh mà giáo viên có thể dễ dàng phát hiện những mặt mạnh, mặt yếu của từng em

về kiến thức, kĩ năng và tư duy để từ đó giúp học sinh phát huy được tính chủ động

sáng tạo trong học tập.

Hướng dẫn học sinh tìm ra lời giải đúng và hay là rất khó. Đại đa số giáo

viên chỉ hướng dẫn học sinh giải các bài toán trong sách giáo khoa, ít khi đề cập

đến các bài toán khác trong các tài liệu tham khảo. Chính vì thế việc rèn kĩ năng

giải toán điển hình còn có phần hạn chế. Để dạy tốt các dạng toán này điều trước

tiên mỗi giáo viên phải thực sự yêu nghề mến trẻ, thực sự quan tâm đến học sinh từ

đó phải đầu tư nghiên cứu đề ra những biện pháp cụ thể cho từng tiết dạy. Từ

những điều này tôi thấy việc cần phải rèn kĩ năng giải toán điển hình cho học sinh

là quan trọng. Song bản thân tôi không có tham vọng lớn mà chỉ cố gắng nghiên

cứu tìm tòi nhằm đáp ứng được phần nào trong việc đổi mới và nâng cao chất

lượng dạy học. Vì lẽ đó năm học 2013-2014 này tôi đã chọn nội dung “ Rèn kỹ

năng giải toán điển hình ở lớp 4” để nghiên cứu và áp dụng vào công tác giảng dạy

của mình

pdf13 trang | Chia sẻ: lacduong21 | Ngày: 13/12/2020 | Lượt xem: 539 | Lượt tải: 8Download
Bạn đang xem tài liệu "SKKN Rèn kỹ năng giải Toán điển hình ở Lớp 4", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
1PHÒNG GIÁO DỤC VÀ ĐÀO TẠO GIÁ RAI
TRƯỜNG TIỂU HỌC HỘ PHÒNG C
----------------------------
MỘT SỐ KINH NGHIỆM 
RÈN KỸ NĂNG GIẢI TOÁN ĐIỂN HÌNH
Ở LỚP 4 
Họ và tên người thực hiện: ĐỖ THANH THUÝ
Chức vụ: Giáo viên chủ nhiệm lớp 4
 Hộ Phòng, ngày12 tháng 05 năm 2014
PHẦN THỨ NHẤT: ĐẶT VẤN ĐỀ
Trong chương trình toán ở tiểu học, việc giải các bài toán chiếm một vị trí 
rất quan trọng. Được thể hiện qua các khái niệm toán học, các quy tắc toán học đều 
được giảng dạy thông qua giải toán. Việc giải toán giúp học sinh củng cố vận dụng 
các kiến thức, rèn luyện kĩ năng tính toán . Đồng thời qua việc giải toán cho học 
sinh mà giáo viên có thể dễ dàng phát hiện những mặt mạnh, mặt yếu của từng em 
về kiến thức, kĩ năng và tư duy để từ đó giúp học sinh phát huy được tính chủ động 
sáng tạo trong học tập.
Hướng dẫn học sinh tìm ra lời giải đúng và hay là rất khó. Đại đa số giáo 
viên chỉ hướng dẫn học sinh giải các bài toán trong sách giáo khoa, ít khi đề cập 
đến các bài toán khác trong các tài liệu tham khảo. Chính vì thế việc rèn kĩ năng 
giải toán điển hình còn có phần hạn chế. Để dạy tốt các dạng toán này điều trước 
tiên mỗi giáo viên phải thực sự yêu nghề mến trẻ, thực sự quan tâm đến học sinh từ 
đó phải đầu tư nghiên cứu đề ra những biện pháp cụ thể cho từng tiết dạy. Từ 
những điều này tôi thấy việc cần phải rèn kĩ năng giải toán điển hình cho học sinh 
là quan trọng. Song bản thân tôi không có tham vọng lớn mà chỉ cố gắng nghiên 
cứu tìm tòi nhằm đáp ứng được phần nào trong việc đổi mới và nâng cao chất 
lượng dạy học. Vì lẽ đó năm học 2013-2014 này tôi đã chọn nội dung “ Rèn kỹ 
năng giải toán điển hình ở lớp 4” để nghiên cứu và áp dụng vào công tác giảng dạy 
của mình.
PHẦN THỨ HAI: NỘI DUNG
I.THỰC TRẠNG :
1. Đối với giáo viên:
Trong quá trình dạy học có thể nói người giáo viên còn chưa có sự chú ý 
đúng mức tới việc làm thế nào để đối tượng học sinh nắm vững được lượng kiến 
thức, đặc biệt là các bài toán điển hình. Nguyên nhân là do giáo viên phải dạy 
nhiều môn, thời gian dành để nghiên cứu, tìm tòi những phương pháp dạy học phù 
hợp với đối tượng học sinh trong lớp còn hạn chế. Do vậy, chưa lôi cuốn được sự 
tập trung chú ý nghe giảng của học sinh. Bên cạnh đó nhận thức về vị trí, tầm quan 
2
trọng của các bài toán điển hình trong môn Toán cũng chưa đầy đủ. Từ đó dẫn đến 
tình trạng dạy học chưa trọng tâm, kiến thức còn dàn trải.
2. Đối với học sinh:
Còn nhiều gia đình học sinh chưa thực sự quan tâm tới việc học tập của con 
cái. Do điều kiện kinh tế còn khó khăn và trình độ học vấn chưa cao nên chưa chú 
ý đến việc học hành của con cái.Đặc biệt chưa nhận thức đúng vai trò của môn 
Toán. Học sinh chưa ý thức được nhiệm vụ của mình, chưa chịu khó, tích cực tư 
duy suy nghĩ tìm tòi cho mình những phương pháp học đúng để biến tri thức của 
thấy thành của mình. Cho lên sau khi học xong bài, các em chưa nắm bắt được 
lượng kiến thức thầy giảng rất nhanh quên và kĩ năng tính toán chưa nhanh. Nhất 
là đối với kỹ năng giải toán điển hình 
Kết quả khảo sát chất lượng đầu năm như sau:
Lớp
Tổng số
HS
Khá giỏi Trung bình yếu
SL % SL % SL %
4a1 25/13 6 24,0 10 40,0 9 36,0
II. KINH NGHIỆM RÈN KỸ NĂNG GIẢI TOÁN ĐIỂN HÌNH.
1. Xác định các bước giải toán điển hình:
a) Bước 1:
Cho học sinh giải các bài toán có tính chất chuẩn bị cơ sở việc giải loại toán 
sắp học. Các bài toán có tích chất chuẩn bị này nên có số liệu không lớn lắm để 
học sinh có thể tính miệng được dễ dàng nhằm tạo điều kiện cho các em tập trung 
suy nghĩ váo các mối quan hệ toán học và các từ mới chứa trong đầu bài toán.
VD1: Để chuẩn bị cho việc học loại toán “Tìm số trung bình cộng” có thể 
cho học giải bài toán đơn sau: “Anh Hải điều khiển máy xay lúa. Trong 8 giờ anh 
xay được 72 tạ lúa. Hỏi trung bình mỗi giờ anh xay được mấy tạ thóc?”.
VD2: Để chuẩn bị cho việc học loại toán “ Tìm hai số biết tổng và tỉ số của 
chúng”. Có thể cho học sinh giải bài toán sau: “ Mẹ có 30 cái kẹo, chia thành 3 gói 
bằng nhau. Mẹ cho chị 1 gói, cho em 2 gói. Hỏi chị được mấy cái kẹo?”
b) Bước 2: 
3
Cho học sinh phân tích và giải bài mẫu về loại toán điển hình đó. Những bài 
toán được chọn làm mẫu này nên có số liệu không lớn quá và có dạng tiêu biểu 
nhất chứa dựng tất cả những đặc điểm chung của loại toán điển hình cần học để 
học sinh có thể tập trung chú ý được vào khâu nhận dạng loại toán và rút ra được 
cách giải tổng quát.
VD3: Dạy phần bài mới của tiết: “Bài toán tìm 2 số biết tổng và hiệu của 
chúng”- lớp 4.
* Giáo viên đọc đề toán “ Mẹ cho hai anh em tất cả 10 cái kẹo, em được 
nhiều hơn anh 2 cái. Hỏi số kẹo của anh và số kẹo của em?”
* Tổ chức làm việc trên đồ dùng học tập.
- Mỗi học sinh lấy 10 nắp bia ( tượng trưng cho 10 cái kẹo ) khoanh phần 
trên mặt bàn thành 2 vòng: vòng lớn chứa số kẹo của em, vòng nhỏ chứa số kẹo 
của anh.
- Em được nhiều hơn anh 2 cái kẹo. Vậy ta lấy 2 cái kẹo cho em trước rồi 
chia đôi phần còn lại. Hãy lấy 2 cái kẹo cho em trước (học sinh đặt 2 nắp bia vào 
vòng lớn).
+ “Còn lại mấy cái kẹo?” (10 - 2 = 8 cái)
+ Bây giờ chia đều cho 2 anh em. Mỗi phần được mấy cái? (8 : 2 = 4 cái). 
Học sinh bỏ vòng, mỗi vòng 4 nắp bia.
- Vậy anh được mấy cái kẹo? (4 cái).
- Còn em được mấy cái kẹo? (2 + 4 = 6 cái)
*Giáo viên hướng dẫn nhận dạng trên sơ đồ tóm tắt.
- Bài toán yêu cầu tìm 2 số: trong này có 1 số lớn (số kẹo của em) và 1 số bé 
(số kẹo của anh). Ta biểu thị số lớn bằng một đoạn thẳng dài, số bé bằng một đoạn 
ngắn hơn.
Số lớn:
Số bé: 
- Bài toán cho biết gì? ( có tất cả 10 cái kẹo, em được nhiều hơn anh 2 cái).
- Đúng vậy: Có tất 10 cái kẹo, nghĩa là tổng của 2 số là 10. Em được nhiều 
hơn 2 cái nghĩa là hiệu của 2 số đó là 2 (giáo viên vẽ tiếp vào tóm tắt để có)
4
2Giáo viên nêu: ta có bài toán tìm 2 số biết tổng của chúng là 10, hiệu của 
chúng là 2.
*Hướng dẫn học sinh giải trên sơ đồ.
Giáo viên lấy thước che “đoạn 2” đi rồi hỏi: Nếu bớt 2 ở số lớn thì 2 số như 
thế nào?(... bằng nhau).
- Vậy 2 lần số bé là bao nhiêu? (10 - 2 = 8).
- Tìm số bé bằng cách nào? (8 : 2 = 4).
- Tìm số lớn bằng cách nào? (4 + 2 = 6).
Giáo viên lần lượt ghi từng phần bài giải lên bảng làm mẫu cho học sinh.
*Hướng dẫn rút ra quy tắc giải.
Cách giải này gồm mấy bước: (3 bước).
- Bước 1: Tìm 2 lần số bé bằng cách lấy tổng trừ hiệu.
- Bước 2: Tìm số bé bằng cách chia đôi kết quả trên.
- Bước 3: Tìm số lớn bằng cách lấy số bé + số hiệu..
Song song với việc hướng dẫn giáo viên có thể ghi thêm vào lời giải như 
sau.
Hai lần số bé là: 10 - 2 = 8
 tổng hiệu
Số bé là; 8 : 2 = 4
 (Tổng - hiệu): 2
Số lớn là: 4 + 2 = 6
 số bé hiệu
Vậy tìm số bé ta làm như thế nào?(giáo viên ghi)
Muốn tìm tiếp số lớn ta làm thế nào?(giáo viên ghi)
Vài học sinh nhắc lại
5
Số bé = (tổng - hiệu) : 2
Số lớn = Số bé + hiệu
10
*Làm tương tự để hướng dẫn cách giải thứ 2.
- Bước3: Học sinh giải 1 số bài toán tương tự với bài mẫu song thay đổi 
“văn cảnh” và số liệu để học sinh có khả năng nhận dạng loại toán và giải bài toán.
- Bước 4: Cho học sinh giải các bài toán phức tạp dần.
Chẳng hạn bài toán có thêm câu hỏi hay có câu hỏi khác với câu hỏi bài mẫu 
để sau khi giải như bài mẫu học sinh phải làm thêm 1, 2 phép tính nữa mới ra đáp 
số.
Thay đổi dữ liệu để học sinh phải giải trước những bước trung gian rồi mới 
áp dụng được cách giải như bài mẫu.
- Bước 5: Cho giải xen kẽ 1, 2 bài toán thuộc loại khác đã học nhưng có 
dạng na ná tương tự loại toán đang học (tương tự về nội dung, về cách nêu dữ liệu 
hoặc về một bước giải nào đó...) để tránh cách suy nghĩ máy móc, dập khuôn.
- Bước 6: Cho học sinh tự lập đề toán thuộc loại toán điển hình đang học.
*Rèn kỹ năng cho học sinh sau khi đã biết cách giải.
Cụ thể: các loại bài rèn KN dạng toán “Tìm 2 số khi biết tổng và hiệu của 2 
số đó”.
**Giải các bài toán nâng dần mức độ phức tạp trong mối quan hệ giữa số đã 
cho và số phải tìm:
Bài toán 1: Tuổi của chị và tuổi của em cộng lại được 32 tuổi. Em kém chị 8 
tuổi. Hỏi em bao nhiêu tuổi, chị bao nhiêu tuổi?
Tóm tắt:
Tuổi em: ? 
Tuổi chị: 8 tuổi 
Bài giải: Hai lần tuổi em là
32 - 8 = 24 (tuổi).
 Tuổi em là:
24 : 2 = 12 (tuổi)
 Tuổi chị là:
12 + 8 = 20 (tuổi)
6
ĐS: Chị 20 tuổi, em 12 tuổi.
Bài toán 2: Một vườn trường HCN có chu vi 480m. Tính diện tích của vườn. 
Biết rằng nếu viết thêm chữ số 2 vào trước số đo chiều rộng thì được số đo chiều 
dài.
Tóm tắt:
Chiều rộng:
Chiều dài: 
Bài giải: Số đo chiều rộng phải là số có 2 chữ số và nếu có 1 chữ số thì chu 
vi của vườn sẽ nhỏ hơn 480m. Nếu có 3 chữ số thì chu vi lớn hơn 480m.
Khi đó viết thêm số 2 vào trước số đo chiều rộng có 2 chữ số thì ta được 
chiều dài.
Vậy chiều dài hơn chiều rộng là 200m
Nửa chu vi là: 
480 : 2 = 240 (m)
Chiều rộng vườn trường là:
(240 - 200): 2 = 20 (m)
Chiều dài vườn trường là:
200 + 20 = 220 (m)
Diện tích HCN là:
220 x 20 = 4400 (m2 )
ĐS: 4400 m2
*Một số điểm cần lưu ý:
- Khắc sâu kiến thức đã học, ôn lại kiến thức cũ. Gọi học sinh nhắc lại công 
thức tính diện tích HCN.
- Học sinh tính nửa chu vi HCN để tính tổng chiều dài và chiều rộng.
- Khi viết thêm chữ số 2 vào 1 số có 2 chữ số thì có ý nghĩa gì?
Biện pháp khắc phục:
- Gọi học sinh nêu công thức tính chu vi, diện tích HCN.
P = (a + b) x 2 = > Nửa chu vi: 480 : 2
S hcn = a x b
7
- Đưa bài toán về dạng cơ bản.
+ Biết nửa chu vi có nghĩa là biết gì? (tổng dài + rộng).
+ Viết thêm 2 vào chiều rộng được chiều dài nghĩa là gì? (chiều dài hơn 
chiều rộng 200 đơn vị).
+ Đây là bài toán ở dạng nào? (tìm 2 số khi biết tổng và hiệu).
2. Giải bài toán có nhiều cách giải.
* Ví dụ:
Bài toán: Tìm 2 số chẵn liên tiếp có tổng bằng số chẵn lớn nhất có 2 chữ số.
Giải
Cách 1: Hai lần số bé là
98 - 2 = 96
Số bé là
96 : 2 = 48
Số lớn là
48 + 2 = 50
Cách 2: Hai lần số lớn là
98 + 2 = 100
Số lớn là
100 : 2 = 50
Số bé là
50 - 2 = 48
Cách 3: Trung bình cộng của 2 số là
98 : 2 = 49
Số chẵn lớn là
49 + 1 = 50
Số chẵn bé là
49 - 1 = 48
ĐS: 48 và 50
3.Tiếp xúc với các bài toán thừa dữ kiện, thiếu dữ kiện hoặc điều kiện 
của bài toán.
8
VD1: Tuổi của 2 bố con là 50 tuổi. Hỏi tuổi bố và tuổi con.
Bài toán này có giải được không?(không)
Vì sao?(vì chỉ biết tổng số tuổi)
Muốn giải được bài toán này thì ta cần thêm yếu tố gì?(hiệu giữa tuổi bố và 
tuổi con).
VD cha hơn con là 25 tuổi (26, 27...< 50). Hoặc tuổi của 2 bố con là 50, biết 
bố sinh con năm bố 29 tuổi. Hỏi tuổi của bố và con.
VD2: Cả 2 lớp 4A, 4B trồng được 485 cây. lớp 4A trồng được ít hơn lớp 4B 
là 45 cây. Lớp 4C trồng được nhiều hơn 4D là 2 cây. Hỏi lớp 4A, 4B trồng được 
bao nhiêu cây?
Để ý ta thấy đầu bài hỏi gì về lớp 4C, 4D không?(không). Vậy ta có cần tìm 
2 lớp đó không?(không). Vậy đó là dữ kiện thừa.
4. Giải bài toán trong đó phải xét đến khả năng xảy ra của bài toán để 
chọn 1 khả năng thỏa mãn bài toán.
Ví dụ:
Bài toán: Cho ab + ba = 132
 a - b = 4
Tìm ab ?
Giải
Điều kiện: a, b ≠ 0, a ≥ 5
Nếu a = 5 ; b = 1 = > 51 + 15 = 66 (loại)
 b = 6 ; b = 2 = > 62 + 26 = 88 (lọai)
 a = 7 ; b = 3 = > 73 + 37 = 110 (loại)
 a = 8 ; b = 4 = > 84 + 48 = 132 (được)
 a = 9 ; b = 5 = > 95 + 59 = 154 (loại)
Lưu ý: Học sinh chưa tìm ra điều kiện của bài toán.
 Khắc sâu cho học sinh
Biện pháp khắc phục
Để tìm ra điều kiện ta thử chọn 1 số trường hợp
a = 0 thì 0b + b0; a - b = 4 (sai)
9
a = 4 thì b ≠ 0 ta có a - b = 4 (sai)
5. Lập và biến đổi bài toán
a) Đăt câu hỏi cho bài toán mới chỉ biết số liệu hoặc điều kiện của bài toán.
Ví dụ:
Bài toán: Hai đội làm đường cùng đắp chung 1 quãng đường dài 800m. Đội 
thứ nhất đắp được ít hơn đội thứ 2 là 136m. Hỏi cả 2 đội đắp được bao nhiêu m 
đường? Hỏi mỗi đội đào được bao nhiêu m?
b) Đặt điều kiện cho bài toán.
Bài toán: Tổng của 1 số có 2 chữ số và viết số theo thứ tự ngược lại 
bằng . * 7* . Tìm số đó biết hiệu giữa hàng chục và hàng đơn vị là 2.
Hướng dẫn học sinh tìm ra điều kiện.
Gọi 2 số phải tìm là ab viết ngược lại ba theo bài ra ta có:
ab + ba = *7*
 a - b = 2 nếu a = 0 = > b = 0 ta có
00 + 00 = *7*
 a - b = 2 (sai)
Do đó điều kiện của bài là: a ≠ 0; b ≠ 0; a ≥ 1.
Giải
Hằng trăm của tổng phải bằng 1, hàng đơn vị và hàng chục đều có a + b mà 
tổng có chữ số nên a + b = 17 - 1 = 16 . Mà theo đầu bài: a - b = 2, do đó ta có.
a = (16 + 2) : 2 = 9
b = 16 - 9 = 7
ĐS: 97
c) Chọn số hoặc số đo đại lượng còn thiếu của bài toán.
Bài toán: Một cửa hàng bán được 215m vải hoa và trắng. Sau đó cửa hàng 
bán thêm 37m vải hoa và trắng. Như vậy cửa hàng đã bán vải hoa nhiều hơn vải 
trắng. Hỏi cửa hàng bán đã bán được bao nhiêu m vải hoa, bao nhiêu m vải trắng.
Tổng số m vải hoa và vải trắng của cửa hàng đã bán được bao nhiêu?
215 + 37 = 252 (m)
Bài toán còn thiếu gì? (hiệu số)
10
d) Lập bài toán tương tự với bài toán đã giải.
e) Lập đề toán ngược với đề toán đã giải.
g) Lập bài toán theo cách giải sẵn.
PHẦN THỨ BA:KẾT LUẬN
I. KẾT QUẢ ĐẠT ĐƯỢC:
Lớp Tổng số 
học sinh
Khá giỏi Trung bình Yếu kém
Số HS % Số HS % Số HS %
4A1 25/13 18 72,0 7 28,0
Trên đây là bảng kết quả được tính dựa trên kết quả của bài kiểm tra viết của 
học sinh. Sau khi dạy xong các dạng toán cơ bản giáo viên cho học sinh làm bài 
kiểm tra với một thời gian phù hợp và được tính toán trước. Tôi thấy:
Với việc dạy theo đề tài nghiên cứu thấy rằng kết quả đạt cao hơn cách dạy 
thông thường. Do việc chú ý khắc sâu trọng tâm của bài dạy rồi mỗi loại bài rồi 
đưa ra các tình huống khác nhau để học sinh làm quen sử dụng và thành thạo rèn 
cho mình có được kỹ năng giải toán cho từng loại.
Trong hoạt động dạy học, người giáo viên đóng vai trò chủ đạo tác động sư 
phạm lên hoạt động nhận thức của học sinh. Để thực hiện tốt hoạt động dạy của 
mình người giáo viên cần sử dụng tốt các phương pháp dạy học nhằm truyền thụ trí 
thức, hình thành kỹ năng, kỹ xảo cho học sinh. Đối với hoạt động của học sinh, 
chúng ta thấy học sinh không chỉ là đối tượng tác động sư phạm của người giáo 
viên mà còn là chủ thể của hoạt động nhận thức. Người học sinh chủ động tiếp thu 
tri thức, rèn kỹ năng kỹ xảo mà giáo viên truyền thụ cho. Chính vì vậy, trong học 
tập không ai có thể thay thế người khác chỉ khi chủ thể chủ động nhận thức thì hoạt 
động của giáo viên mới có hiệu quả và hoạt động học tập mới có ý nghĩa.
II. ĐỀ XUẤT, KIẾN NGHỊ.
1. Đối với giáo viên.
Điều cần thiết và không thể coi nhẹ là giáo viên phải dạy tốt lý thuyết, từ đó 
mới phát triển được các tư duy suy luận cho học sinh. Để rèn luyện kỹ năng giải 
toán cho học sinh thì trong quá trình giảng dạy học giải toán lên kết hợp và lựa 
11
chọn các phương pháp dạy tốt. khi dạy học sinh lớp 4 giải toán, điển hình với mỗi 
loại toán giáo viên không chỉ giúp học sinh giải đúng bài tập trong sách giáo khoa 
mà cần rèn khả năng giải loại toán đó, đặt ra các tình huống để các em suy nghĩ, 
tìm tòi cách giải khác nhau.
2. Đối với học sinh.
Học sinh phải tự giác tích cực tiếp thu kiến thức nhằm trang bị cho mình 
những kỹ năng thực hành giải toán thành thạo. Học sinh phải nắm vững phương 
pháp chung để giải các bài toán điển hình. Từ đó, suy nghĩ tìm tòi cách giải khác 
nhau.
Trên đây một số kinh nghiệm của tôi, khi viết không tránh khỏi sự thiếu 
sót.Tôi rất mong được đón nhận những ý kiến góp ý chân thành của các bạn đồng 
nghiệp cũng như các nhận xét bổ ích của các cấp lãnh đạo để góp phần nâng cao 
chất lượng dạy học môn Toán ở trường Tiểu học.
Hộ Phòng, ngày 09 tháng 05 năm 2014
 Người viết
 ĐỖ THANH THÚY
12
13

File đính kèm:

  • pdftt.pdf
Sáng Kiến Liên Quan