Sáng kiến kinh nghiệm Sự phong phú của tam giác đồng dạng
* Người ta thường nói:’’Bínhưhì nh ‘’thật không sai ;bởi v ìphần lớn học sinh đều ngán ngẫm môn
học nàydo sựphong phúvàphức tạp c ủa ‘’tam giác đồng dạng’’.Nh ưng nếu các em nắmchắc được lí
thuy ết vàvận dụng tốtthìtrítuệphát triển rất nhanh.
*Trong chương trình hì nh học phẳng THCS, đặc biệt làchương 3hình học 8, phương pháp“Tam giác
đồng dạng” làmột công cụquan trọng nhằm giải quy ết các bài toán hình học. Làm cơsở đểhọc sinh
vận dụng giaỉcác bài toá n vềhình học phẳng ởc ác lớp trên .
*Phươ ng phá p “ Tam giác đồng d ạng” l àphươ ng pháp ứng d ụng tí nh chất đồng dạng c ủa tam gi á c, tỷ lệ
c ác đoạ n thẳ ng, trên c ơsở đót ì m ra hướng giải c ác dạng toá n hì nh học.
*Trên thực tế, việc áp dụng phương pháp “Tam giác đồng dạng” trong giải toán cócác thuận lợi và
khókhăn chứng nhưsau:
* Thuận lợi:
+ Phương pháp “Tam giác đồng dạng” làcông cụchính giúp ta tính toán nhanh chóng các
dạng toán đặc trưng về tính tỷ lệ, chứng minh hệ thức, các bài tập ứng dụng các định lý sau
Thales.
+ V ới m ột s ốdạ ng toá n quen thu ộc nhưchứng minh đoạ n thẳ ng bằ ng nhau, g óc bằ ng nhau, chứng minh
song song, chứng minh thẳ ng hà ng, ph ươ ng phá p “Tam gi ác đồng dạng” c óthể cho ta những cá ch gi ải
quy ết g ọn g à ng, ng ắ n hơn các phươ ng phá p truy ền th ống khác nhau s ửdụng tí nh chất tam giá c, t í nh chất t ứ
giác đặc bi ệ t.H ọc sinh s ẽ vậ n d ụng linh hoạ t, nhuầ n nhuy ễn khi giải to á n .
+ Phương phá p “ Tam giác đồng dạng” gi úp rèn luy ệ n tốt kh ảnă ng tưduy logic của học sinh, r èn
luy ệ n tính sá ng tạ o, phát tri ểntr í tuệ cho học sinh một c á ch hiệu quả. Từ đóhọc sinh đam mêhọc toá n .
tỉ số chu vi, tỉ số diện tích: _Ví dụ: 1) Cho ABC, D là điểm trên cạnh AC sao cho BDC ABC . Biết AD = 7cm; DC = 9cm. Tính tỷ số BA BD 2) Cho hình vuông ABCD, gọi E và F theo thứ tự là trung điểm của AB, BC, CE cắt DF ở M. Tính tỷ số ABCD CMB S S ? 3) Cho ABC, D là trung điểm của BC, M là trung điểm của AD. a) BM cắt AC ở P, P’ là điểm đối xứng của P qua M. Chứng minh rằng PA = P’D. Tính tỷ số PC PA và AC AP b) Chứng minh AB cắt Q, chứng minh rằng PQ // BC. Tính tỷ số BC PQ và MB PM 12cm 20cm H C B A 60 K N M D C B A Trường THCS Trần Quang Diệu Năm học:2009 - 2010 GV:Nguyễn Kim Chánh Sáng kiến kinh nghiệm 5 c) Chứng minh rằng diện tích 4 tam giác BAM, BMD, CAM, CMD bằng nhau. Tính tỷ số diện tích MAP và ABC. Giải:1) CAB và CDB có C chung ; ABC = BDC (gt) CAB P CDB (g.g) CB CA CD CB do đó ta có : CB2 = CA.CD Theo gt CD = 9cm; DA = 7cm nên CA = CD + DA = 9 + 7 = 16 (cm) Do đó CB2 = 9.16 = 144 CB = 12(cm) Mặt khác lại có : 4 3 BA DB Giải:2) Xét DCF và CBE có DC = BC (gt); C = B = 900; BE = CF DCF = CBE (c.g.c) D 1 = C 2 Mà C 1 + C 2 = 1v C 1 + D 1 = 1v CMD vuông ở M CMD P FCD (vì D 1 = C 2 ; C = M ) FC CM FD DC FCD CMD S S = 2 2 FD CD SCMD = 2 2 FD CD . SFCD Mà SFCD = 2 1 CF.CD = 2 1 . 2 1 BC.CD = 4 1 CD2 Vậy SCMD = 2 2 FD CD . 4 1 CD2 = 4 1 . 2 4 FD CD (*) Áp dụng định lý pitago vào tam giác vuông DFC, ta có: DF2 = CD2 + CF2 = CD2 + ( 2 1 BC)2 = CD2 + 4 1 CD2 = 4 5 CD2 Thay DF2 = 4 5 CD2 ta có : SCMD = 5 1 CD2 = 5 1 SABCD ABCD CMB S S = 5 1 _Loại 4: Tính chu vi các hình: _Ví dụ:1) Cho ABC, D là một điểm trên cạnh AB, E là 1 điểm trên cạnh AC sao cho DE // BC. Xác định vị trí của điểm D sao cho chu vi ADE = 5 2 chu vi ABC. Tính chu vi của 2 tam giác đó, biết tổng 2 chu vi = 63cm 2) A’B’C’ P ABC theo tỷ số đồng dạng K = 5 2 .Tính chu vi của mỗi tam giác, biết hiệu chu vi của 2 tam giác đó là 51dm. 3) Tính chu vi ABC vuông ở A biết rằng đường cao ứng với cạnh huyền chia tam giác thành 2 tam giác có chu vi bằng 18cm và 24cm. Giải:1) Do DE // BC nên ADE PABC theo tỷ số đồng dạng. K = AB AD = 5 2 . Ta có . 2 5 Chuvi ADE Chuvi ABC 25 ADEChuviABCChuvi = 63 5 2 7 Chuvi ABC Chuvi ADE = 9 Do đó: Chu vi ABC = 5.9 = 45 (cm) Chu vi ADE = 2.9 = 18 (cm) 9cm 7cm D CB A M F E D C BA ED CB A Trường THCS Trần Quang Diệu Năm học:2009 - 2010 GV:Nguyễn Kim Chánh Sáng kiến kinh nghiệm 6 _Loại 5:Tính diện tích các hình: _Ví dụ :1)Cho hình vuông ABCD có độ dài = 2cm. Gọi E, F theo thứ tự là trung điểm của AD, DC. Gọi I, H theo thứ tự là giao điểm của AF với BE, BD. Tính diện tích tứ giác EIHD 2) Cho tứ giác ABCD có diện tích 36cm2, trong đó diện tích ABC là 11cm2. Qua B kẻ đường thẳng // với AC cắt AD ở M, cắt CD ở N. Tính diện tích MND. 3) Cho ABC có các B và C nhọn, BC = a, đường cao AH = h. Xét hình chữ nhật MNPQ nội tiếp tam giác có M AB; N AC; PQ BC. a) Tính diện tích hình chữ nhật nếu nó là hình vuông. b) Tính chu vi hình chữ nhật a = h c) Hình chữ nhật MNPQ có vị trí nào thì diện tích của nó có giá trị lớn nhất 4) Cho ABC và hình bình hành AEDF có E AB; D BC, F AC. Tính diện tích hình bình hành biết rằng : SEBD = 3cm2; SFDC = 12cm2; Giải:4) Xét EBD và FDC có B = D 1 (đồng vị do DF // AB) (1) E1 = D2 ( so le trong do AB // DF) D2 = E1 ( so le trong do DE // AC) Từ (1) và (2) EBD P FDC (g.g) Mà SEBD : SFDC = 3 : 12 = 1 : 4 = ( 2 1 )2 Do đó : FC ED FD EB 2 1 FD = 2EB và ED = 2 1 FC AE = DF = 2BE ( vì AE = DF) AF = ED = 2 1 EC ( vì AF = ED) Vậy SADE = 2SBED = 2.3 = 6(cm2) SADF = 2 1 SFDC = 2 1 . 12 = 6(cm2) SAEDF = SADE + SADF = 6 + 6 = 12(cm2) &.DẠNG 2: Chứng minh hệ thức, đẳng thức nhờ tam giác đồng dạng: A. Các ví dụ và định hướng giải: 1. Ví dụ 1: Cho hình thang ABCD(AB // CD). Gọi O là giao điểm của 2đường chéo AC và BD a) Chứng minh rằng: OA. OD = OB. OC. b) Đường thẳng qua O vuông góc với AB và CD theo thứ tự tại H và K. CMR: OH OK = CD AB * Tìm hiểu bài toán : Cho gì? Chứng minh gì? * Xác định dạng toán: ? Để chứng minh hệ thức trên ta cần chứng minh điều gì? TL: OC OA = OD OB ? Để có đoạn thẳng trên ta vận dụng kiến thức nào. TL: Chứng minh tam giác đồng dạng a) OA. OD = OB.OC E 1 = F 1 (2) F D E CB A K H O D C BA Trường THCS Trần Quang Diệu Năm học:2009 - 2010 GV:Nguyễn Kim Chánh Sáng kiến kinh nghiệm 7 Sơ đồ : + A 1 = C 1 (SLT l AB // CD) + AOB = COD ( Đối đỉnh) OAB P OCD (g.g) OC OA = OD OB OA.OD = OB.OC b) OK OH = CD AB Tỷ số OK OH bằng tỷ số nào? TL : OK OH = OC OA ? Vậy để chứng minh OK OH = CD AB ta cần chứng minh điều gì. TL: CD AB = OC OA Sơ đồ : +H = K = 900 + A 1 = C 1.(SLT; AB // CD) Câu a OAH P OCK(gg) OAB P OCD OK OH = OC OA CD AB = OC OA OK OH = CD AB 2. Ví dụ 2: Cho hai tam gíac vuông ABC và ABD có đỉnh góc vuông C và D nằm trên cùng một nửa mặt phẳng bờ AB. Gọi P là giao điểm của các cạnh AC và BD. Đường thẳng qua P vuông góc với AB tại I.CMR : AB2 = AC. AP + BP.PD Định hướng: - Cho HS nhận xét đoạn thẳng AB (AB = AI + IB) AB2 = ? (AB.(AI + IB) = AB . AI + AB. IB) - Việc chứng minh bài toán trên đưa về việc chứng minh các hệ thức AB.AI = AC.AP AB.IB = BP. PD - HS xác định kiến thức vận dụng để chứng minh hệ thức ( P) I P D C BA Trường THCS Trần Quang Diệu Năm học:2009 - 2010 GV:Nguyễn Kim Chánh Sáng kiến kinh nghiệm 8 Sơ đồ : + D = I = 900 + C = I = 900 + PBI chung + PAI chung ADB P PIB ACB P AIP (gg) AB PB = DB IB AB AP = AC AI AB.AI = PB.DB AB . AI = AC . AP AB . IB + AB . AI = BP . PD + AC . AP AB (IB + IA) = BP . PD + AC . AP AB2 = BP . PD + AC . AP 3. Ví dụ 3: Trên cơ sở ví dụ 2 đưa ra bài toán sau: Cho nhọn ABC, các đường cao BD và CE cắt nhau tại H. CMR: BC2 = BH . BD + CH.CE Định hướng: Trên cơ sở bài tập 2 Học sinh đưa ra hướng giải quyết bài tập này. Vẽ hình phụ (kẻ KH BC; K BC). Sử dụng P chứng minh tương tự ví dụ 2 4. Ví dụ 4: Cho ABC, I là giao điểm của 3 đường phân giác, đường thẳng vuông góc với CI tại I cắt AC và BC lần lượt ở M và N. Chứng minh rằng. a) AM . BI = AI. IM b) BN . IA = BI . NI c) AM BN = 2AI BI * Định hướng: a) ? Để chứng minh hệ thức AM. BI = AI.IM ta cần chứng minh điều gì ? AM IM AI BI b) Để chứng minh đẳng thức trên ta cần chứng minh điều gì ? ( AMI P AIB) Sơ đồ: 1A = 2A (gt) 1I = 1B * CM: 1I = 1B v MIC: IMC = 900 - 2 C AMI P AIB (gg) ABC: A + B + C = 1800(t/c tổng...) H D E CB A 1 1 21 N M I CB A Trường THCS Trần Quang Diệu Năm học:2009 - 2010 GV:Nguyễn Kim Chánh Sáng kiến kinh nghiệm 9 2 A + 2 B + 2 C = 900 AM AI = IM BI Do đó: IMC = 2 A + 2 B (1) Mặt khác: IMC = 1A + 1I (t/c góc ngoài ) AM. BI = AI . IM hay IMC = 2 A + 1I (2) Từ (1) và (2) 2 B = 1I hay 1B = 1I AMI P AIB (1A = 2A ; 1I = 1B ) AM AI = IM BI AM . BI = AI. IM b) Tương tự ý a. Chứng minh BNI P BIA (gg) BN BI = NI IA BN . IA = BI. IN c) (Câu a) (Câu b) - HS nhận xét 2AI IA = 2 2 AI BI AMI P AIB BNI P BIA Tính AI2 ; BI2 2 2 AI BI AM AI = IM BI BI AB = BN BI (Tính AI2 ; BI2 nhờ P) AI2 = AM . AB BI2 = BN . AB 2 2 AI BI = AM BN 2AI BI = AM BN B.Bài tập đề nghị: 1) Cho hình thanh ABCD (AB // CD), gọi O là giao điểm của 2 đường chéo. Qua O kẻ đường thẳng song song với 2 đáy cắt BC ở I cắt AD ở J.CMR : a) 1 OI = 1 AB + 1 CD b) 2 IJ = 1 AB + 1 CD Trường THCS Trần Quang Diệu Năm học:2009 - 2010 GV:Nguyễn Kim Chánh Sáng kiến kinh nghiệm 10 2) Cho ABC, phân giác AD (AB < AC). trên tia đối của tia DA lấy điểm I sao cho ACI = BDA . CMR: a) AD . DI = BD . DC b) AD2 = AB . AC - BD . DC &.DẠNG3: Chứng minh quan hệ song song: + Ví dụ 1: Cho hình thang ABCD (AB // CD). Gọi M là trung điểm của CD, E là giao điểm của MA và BD; F là giao điểm của MB và AC. Chứng minh rằng EF / / AB Định hướng giải: - Sử dụng trường hợp đồng dạng của tam giác - Định nghĩa hai tam giác đồng dạng - Dấu hiệu nhận biết hai đường thẳng song song (định lý Ta lét đảo) Sơ đồ phân tích: AB // CD (gt) AB // CD (gt) AB // DM AB // MC MED P AEB GT MFC P BFA ME EA = MD AB ; MD = MC MF FB = MC AB ME EA = MF FB EF // AB (Định lý Ta lét đảo) + Ví dụ 2: Cho ABC có các góc nhọn, kẻ BE, CF là hai đường cao. Kẻ EM, FN là hai đường cao của AEF. Chứng minh MN // BC Sơ đồ phân tích AMF P AFC (g.g); AFN P ABE AM AF = AE AC AF AB = AN AE AM AF . AF AB = AE AC . AE AC AM AB = AN AC MN // BC (định lý Ta – lét đảo) F E M D C BA NM E F CB A Trường THCS Trần Quang Diệu Năm học:2009 - 2010 GV:Nguyễn Kim Chánh Sáng kiến kinh nghiệm 11 + Ví dụ 3: Cho ABC, các điểm D, E, F theo thứ tự chia trong các cạnh AB, BC, CA theo tỷ số 1 : 3, các điểm I, K theo thứ tự chia trong các đoạn thẳng ED, FE theo tỉ số 1 : 3. Chứng minh rằng IK // BC. Gọi M là trung điểm của AF Giải: Gọi N là giao điểm của DM và EF Xét ADM và ABC có : AD AB = AM AC = 1 3 Góc A chung ADM P ABC (c.gc) ADM = ABC mà 2 góc này ở vị trí đồng vị nên DM // BC MN // EC mà MF = FC nên EF = FN Ta có : EK EN = EK EF . EF EN = 2 3 . 1 2 = 1 3 (1) mà EI ED = 1 3 (gt) (2) Từ (1) và (2) EK EN = EI ED Suy ra IK // DN (định lý Ta – lét đảo) Vậy IK // BC. *Bài tập đề nghị: Cho tứ giác ABCD, đường thẳng đi qua A song song với BC cắt BD. Đường thẳng đi qua B và song song với AD cắt AC ở G. Chứng minh rằng EG // DC &.DẠNG4: Chứng minh tam giác đồng dạng: + Ví dụ 1: Cho ABC; AB = 4,8cn; AC = 6,4cm; BC = 3,6cm .Trên AB lấy điểm D sao cho AD = 3,2cm, trên AC ,lấy điểm E sao cho AE = 2,4cm, kéo dài ED cắt CB ở F. a) CMR : ABC P AED b) FBD P FEC c) Tính ED ; FB? Bài toán cho gì? Dạng toán gì? Để chứng minh 2 đồng dạng có những phương pháp nào? Bài này sử dụng trường hợp đồng dạng thứ mấy? Sơ đồ chứng minh: a) GT A chung AB AE = AC AD = 2 ABC P AED (c.g.c) ABC P AED (câu a) b) C = 1D ; 1D = 2D N M KI F E D CB A 4,8cm 6,4cm 3,6cm F E D C B A Trường THCS Trần Quang Diệu Năm học:2009 - 2010 GV:Nguyễn Kim Chánh Sáng kiến kinh nghiệm 12 C = 2D F chung FBD P FEC (g.g) c) Từ câu a, b hướng dẫn học sinh thay vào tỷ số đồng dạng để tính ED và FB. + Ví dụ 2: Cho ABC cân tại A; BC = 2a; M là trung điểm của BC. Lấy các điểm D và E trên AB; AC sao cho DME = B . a) CMR : BDM P CME b) MDE P DBM c) BD . CE không đổi ? Để chứng minh BDM P CME ta cần chứng minh điều gì. ? Từ gt nghĩ đến 2 có thể P theo trường hợp nào (g.g) ? Gt đã cho yếu tố nào về góc. ( B = C ) ? Cần chứng minh thêm yếu tố nào (1D = 2M ) a) Hướng dẫn sơ đồ gt góc ngoài DBM B = 1M ; DMC = 1M + 2M ; DMC = 1D + 1B ABC cân B = C ; 1D = 2M BDM P CME (gg) Câu a gt b) DM ME = BD BM ; CM = BM DM ME = BD BM 1B = 1M (gt) ; DM ME BD BM DME P DBM (c.g.c) c) Từ câu a : BDM P CME (gg) BD BM CM CE BD . CE = Cm . BM Mà CM = BM = 2 BC = a BD . CE = 2 4 a (không đổi) Lưu ý: Gắn tích BD . CB bằng độ dài không đổi Bài đã cho BC = 2a không đổi 1 1 2 1 E D M C B A EF QP NM D CB A Trường THCS Trần Quang Diệu Năm học:2009 - 2010 GV:Nguyễn Kim Chánh Sáng kiến kinh nghiệm 13 Nên phải hướng cho học sinh tính tích BD. CE theo a + Ví dụ 3: Cho ABC có các trung điểm của BC, CA, AB theo thứ tự là D, E, F. Trên cạnh BC lấy điểm M và N sao cho BM = MN = NC. Gọi P là giao điểm của AM và BE; Q là giao điểm của CF và AN. CMR: a) F, P, D thẳng hàng; D, Q, E thẳng hàng. b) ABC P DQP * Hướng dẫn a) Giáo viên hướng dẫn học sinh chứng minh 3 điểm thẳng hàng có nhiều phương pháp. Bài này chọn phương pháp nào? - Lưu ý cho học sinh bài cho các trung điểm nghĩ tới đường trung bình . Từ đó nghĩ đến chọn phương pháp: CM cho 2 đường thẳng PD và FP cùng // AC PD là đường trung bình BEC PD // AC FP là đường trng bình ABE FP // AC Tương tự cho 3 điểm D, Q, E b) PD = 1 2 . EC = 1 2 . 2 AC = 4 AC AC PD = 4 4 4 AC AB QD = 4 4QD QD AC AB DP QD ; BAC EDP ABC P DQP (c.g.c) * Bài tập đề nghị: 1) Cho ABC, AD là phân giác A ; AB < AC. Trên tia đối của DA lấy điểm I sao cho ACI BDA . Chứng minh rằng. a) ADB P ACI; ADB P CDI b) AD2 = AB. AC - BD . DC 2) Cho ABC; H, G, O lần lượt là trực tâm, trọng tâm, giao điểm 3 đường trung trực của . Gọi E, D theo thứ tự là trung điểm của AB và AC. Chứng minh : a) OED P HCB b) GOD P GBH c) Ba điểm O, G, H thẳng hàng và GH = 2OG 3) Cho ABC có Ab = 18cm, AC = 24cm, BC = 30cm. Gọi M là trung điểm BC. Qua M kẻ đường vuông góc với BC cắt AC, AB lần lượt ở D, E. a) CMR : ABC P MDC b) Tính các cạnh MDC c) Tính độ dài BE, EC 4) Cho ABC; O là trung điểm cạnh BC. Góc xoy = 600; cạnh ox cắt AB ở M; oy cắt AC ở N. a) Chứng minh: OBM P NCO F, P, D thẳng hàng BAC DEC (Đơn vị EF // AB) DEC EDP (so le trong PD // AC) Trường THCS Trần Quang Diệu Năm học:2009 - 2010 GV:Nguyễn Kim Chánh Sáng kiến kinh nghiệm 14 b) Chứng minh : OBM P NOM c) Chứng minh : MO và NO là phân giác của BMN và CNM d) Chứng minh : BM. CN = OB2 &.DẠNG5:Chứng minh đoạn thẳng bằng nhau, góc bằng nhau: _Ví dụ 1: Cho hình thang ABCD (AB// CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh bên AD, BC theo thứ tự tại E và F. Chứng minh rằng : OE = OF Định hướng H:Bài cho đường thẳng EF // AB (và CD) TL: Các tam giác đồng dạng và các đoạn thẳng tỷ lệ H: EO và đoạn nào trên hình vẽ sẽ thường lập được tỷ số? TL: EO DC . H: Vậy OF trên đoạn nào? (gợi ý) TL: OF DC Sơ đồ giải OE = OF OE DC = OF DC OE DC = AO AC ; OF DC = BO BD ; AO AC = BO BD AEC BOF AOB P P P ADC BDC COD EF // DC AB // CD gt H: Vậy để chứng minh đoạn thẳng bằng nhau (OE = OF) ta sẽ đưa về chứng minh điều gì? TL : EO DC = OF DC (1) H: OE; DC là cạnh của những tam giác nào? (AEO; ADC, các tam giác này đã đồng dạng chưa? Vì dao? H: Đặt câu hỏi tương tự cho OF , DC. H: lập tỷ số bằng EO DC = OF DC TL: EO DC = AO AC ; OF DC = BO BD H: Vậy để chứng minh (1) ta cần chứng minh điều gì? TL: AO AC = BO BD H: Đây là tỷ số có được từ cặp tam giác đồng dạng nào? TL: AOB; COD H: Hãy chứng minh điều đó. FE O D C BA Trường THCS Trần Quang Diệu Năm học:2009 - 2010 GV:Nguyễn Kim Chánh Sáng kiến kinh nghiệm 15 Ví dụ 2: Trên một cạnh của góc xoy (xoy 1800), đặt các đoạn thẳng OA = 5cm, OB = 16cm. Trên cạnh thứ nhất của góc đó, đặt các đoạn thẳng OC = 8cm, OD = 10cm. a) Chứng minh hai tam giác OCB và OAD đồng dạng. b) Gäi giao ®iÓm c¸c c¹nh AD vµ BC lµ I, CMR: Hai tam gi¸c IAB vµ ICD cã c¸c gãc b»ng nhau tõng ®«i mét. Giải:a)Ta có: 8 16 8; 5 10 5 OC OB OA OD OC OA = OB OD OBC P ODA Góc O chung b) Xét IAB và ICD ta dễ nhìn thấy không bằng nhau. Do đó để chứng minh chúng có các góc bằng nhau từng đôi một ta đi chứng minh đồng dạng. Vì OBC P ODA nên OBC = ODA (1) Mặt khác ta có AIB CID (đối đỉnh) BAI P DCI (g.g) BAI DCI Ví dụ 3: Hình thang ABCD (AB // CD) có AB = 4cm, CD = 16cm và BD = 8cm Chứng minh : BAD DBC Giải :Xét BAD và DBC có AB // CD do đó : ABD BDC (so le trong ) 4 1 8 2 AB BD 8 1 16 2 BD DC AB BD BD DC ( cùng bằng 1 2 ) BAD P DBC (c.g.c) BAD DBC Ví dụ 4: Tam giác ABC có hai trung tuyến AK và CL cắt nhau tại O. Từ một điểm P bất kỳ trên cạnh AC, vẽ các đường thẳng PE song song với AK, PF song song với CL ( E thuộc BC, F thuộc AB) các trung tuyến AK, CL cắt đoạn thẳng EF theo thứ tự tại M, N . Chứng minh rằng các đoạn thẳng FM, MN, NE bằng nhau. Định hướng giải: Từ giả thiết cho song song ta suy ra các tỷ lệ thức và tam giác đồng dạng Ta có : FM FE = FQ FP (1) FQ LO = FP CL (cùng AF AL ) FQ FP = 1 3 LO CL (2) ( ta có trung tuyến 1 3 LO CL ) I 10cm 8cm 16cm 5cm x y DC B A O 16cm 8cm 4cm D C BA O N M F E P L K CB A Trường THCS Trần Quang Diệu Năm học:2009 - 2010 GV:Nguyễn Kim Chánh Sáng kiến kinh nghiệm 16 Từ (1) và (2) suy ra : FM FE = 1 3 FM = 1 3 FE Tương tự ta cũng có EN = 1 3 EF và do đó suy ra MN = 1 3 EF Vậy FM = MN = NE * Bài tập đề nghị :Cho hình thang ABCD (AB // CD) đường thẳng song song với đáy Ab cắt các cạnh bên và các đường chéo AD, BD, AC và BC theo thứ tự tại các điểm M, N, P, Q. CMR: MN = PQ &.DẠNG 6: Toán ứng dụng thực tế: + Ví dụ 1: Để đo khoảng cách giữa 2 điểm A và M, trong đó M không tới được, người ta tiến hành đo và tính khoảng cách (như hình vẽ) AB BM; BH AM. Biết AH = 15m; AB = 35m. Giải : Xét AMB và ABH có ; ABM = AHB = 900 (gt) ; A chung AMB P ABH (gg) AM AB = AB AH AM = 2 235 5 5 AB = 81,7(m) Vậy khoảng cách giữa 2 điểm A và M gần bằng 81,7 m + Ví dụ 2: Một ngọn đèn đặt trên cao ở vị trí A, hình chiếu vuông góc của nó trên mặt đất là H. Người ta đặt một chiếc cọc dài 1,6m, thẳng đứng ở 2 vị trí B và C thẳng hàng với H (hình vẽ) Khi đó bóng cọc dài 0,4m và 0,6m . Biết BC = 1,4m. Hãy tính độ cao AH. Giải Gọi BD, CE là bóng của cọc và B’ ; C’ là tương ứng của đỉnh cao. Đặt BB’ = CC’ = a ; BD = b ; CE = c ; BC = d ; AH = x. Gọi I là giao điểm của AH và B’C’. ' 'AI B C AH DE x a d x b d c (x – a) (b + d + c) = x.d x = ab ad ac b c = a(1+ d b c ) Thay số ta được AH = 1,6 (1 + 1, 4 0, 4 0,6 ) = 3,84(m) Vậy độ cao AH bằng 3,84 mét *Bài tập đề nghị: Một giếng nước có đường kính DE = 0,8m (hình vẽ). Để xác định độ sâu BD của giếng, người ta đặtmột chiếc gậy ở vị trí AC, A chạm miệng giếng, AC nhìn thẳng tới vị trí E ở góc của đáy giếng. Biết AB = 0,9m; BC = 0,2m. Tính độ sâu BD của giếng. 35cm 15cm H M B A I D E C' C B' B H A 0,8cm 0,2cm 0,9cm E D CB A Trường THCS Trần Quang Diệu Năm học:2009 - 2010 GV:Nguyễn Kim Chánh Sáng kiến kinh nghiệm 17 III/KẾT LUẬN: Tam giác đồng dạng có nhiều ứng dụng trong giải toán. Đây là một khái niệm khó đối với học sinh , do đó giáo viên cần hướng dẫn, phân tích tỉ mỉ để học sinh tìm ra các bước chứng minh . Khi ứng dụng để chứng minh đoạn thẳng bằng nhau, góc bằng nhau thì các phương pháp thường dùng ở đây là : * Đưa 2 đoạn thẳng cần quy bằng nhau về là tử của 2 tỷ số có cùng mẫu. * Chứng minh các đoạn thẳng cùng bằng một độ dài nào đó. * Đưa 2 góc cần chứng minh bằng nhau về là 2 góc tương ứng của 2 tam giác đồng dạng. * Chứng minh 2 tỷ số bằng nhau sau đó chứng minh tử bằng nhau suy ra 2 đoạn thẳng ở mẫu bằng nhau *Nói chung tuỳ bài toán cụ thể cần sử dụng kiến thức tam giác đồng dạng để giải, ta phải biết cách chọn cặp tam giác đồng dạng phù hợp để chứng minh. Có thể vẽ thêm để xuất hiện cặp tam giác đồng dạng. Chúc các em thành công trong học tập. Quy Nhơn , ngày 10/03/2010 NGUYỄN - KIM - CHÁNH
File đính kèm:
- skkn spp cua tgdd.pdf