Sáng kiến kinh nghiệm Rèn kỹ năng giải bài toán bằng cách lập phương trình cho học sinh Lớp 8, 9
Các dạng toán như trên mối quan hệ giữa các đại lượng là mối quan hệ toán học, các đại lượng ở đây là những con số bất kỳ trong tập hợp các em đã được học. Hàm ý phương trình ở đây được viết sẵn, học sinh chỉ cần giải tìm được ẩn số là hoàn thành nhiệm vụ.
* Lên đến lớp 8, lớp 9, các đề toán trong chương trình đại số về phương trình không đơn giản như vậy nữa, mà có hẳn một loại bài toán có lời. Các em căn cứ vào lời bài toán đã cho phải tự mình thành lập lấy phương trình và giải phương trình. Kết quả tìm được không chỉ phụ thuộc vào kỹ năng giải phương trình mà còn phụ thuộc rất nhiều vào việc thành lập phương trình.
Việc giải bài toán bằng cách lập phương trình ở bậc THCS là một việc làm mới mẻ, đề bài toán là một đoạn văn trong đó mô tả mối quan hệ giữa các đại lượng mà có một đại lượng chưa biết, cần tìm. yêu cầu học sinh phải có kiến thức phân tích, khái quát, tổng hợp, liên kết các đại lượng với nhau, chuyển đổi các mối quan hệ toán học. Từ đề bài toán cho học sinh phải tự mình thành lập lấy phương trình để giải. Những bài toán dạng này nội dung của nó hầu hết gắn liền với các hoạt động thực tiễn của con người, của tự nhiên, xã hội. Nên trong quá trình giải học sinh phải quan tâm đến ý nghĩa thực tế của nó.
ầu 4: Lời giải bài toán phải đơn giản. Bài giải phải đảm bảo được 3 yêu cầu trên không sai sót . Có lập luận, mang tính toàn diện và phù hợp kiến thức, trình độ của học sinh, đại đa số học sinh hiẻu và làm được Ví dụ: (Bài toán cổ ) '' Vừa gà vừa chó Bó lại cho tròn Ba mươi sáu con Một trăm chân chẵn Hỏi có mấy gà, mấy chó? ''. Hướng dẫn Với bài toán này nếu giải như sau: Gọi số gà là x (x > 0, x N) Thì số chó sẽ là: 36 -x (con) Gà có 2 chân nên số chân gà là: 2x chân . Chó có 4 chân nên số chân chó là: 4. (36 -x) chân. Theo bài ra ta có phương trình: 2x + 4. (36 -x ) = 100 Giải phương trình ta được: x =22 thoả mãn điều kiện. Vậy có 22 con gà Số chó là: 36 - 22 = 14 (con) Thì bài toán sẽ ngắn gọn, rễ hiểu. Nhưng có học sinh giải theo cách : Gọi số chân gà là x, suy ra số chân chó là 100 - x Theo bài ra ta có phương trình: Giải phương trình cũng được kết quả là 22 con gà và 14 con chó. Nhưng đã vô hình biến thành bài giải khó hiểu hoặc không phù hợp với trình độ của học sinh. Yêu cầu 5: Lời giải phải trình bày khoa học. Đó là lưu ý đến mối liên hệ giữa các bước giải trong bài toán phải lôgíc, chặt chẽ với nhau. Các bước sau được suy ra từ các bước trước nó đã được kiểm nghiệm, chứng minh là đúng hoặc những điều đã biết từ trước. Ví dụ: (Toán phát triển đại số lớp 9) Chiều cao của một tam giác vuông bằng 9,6 m và chia cạnh huyền thành hai đoạn hơn kém nhau 5,6 m. Tính độ dài cạnh huyền của tam giác? Hướng dẫn giải: Theo hình vẽ trên bài toán yêu cầu tìm đoạn nào, đã cho biết đoạn nào? Trước khi giải cần kiểm tra kiến thức học sinh để củng cố kiến thức. Cạnh huyền của tam giác vuông được tính như thế nào? h = c'. b' AH2 = BH. CH Từ đó gọi độ dài của BH là x (x > 0 ) Suy ra HC có độ dài là: x + 5,6 Theo công thức đã biết ở trên ta có phương trình: x(x + 5,6) = (9,6)2 Giải phương trình ta được: x = 7,2 thoả mãn điều kiện Vậy độ dài cạnh huyền là: (7,2 + 5,6) + 7,2 = 20 ( m ) Yêu cầu 6: Lời giải bài toán phải rõ ràng , đầy đủ, có thể lên kiểm tra lại. Lưu ý đến việc giải các bước lập luận, tiến hành không chồng chéo nhau, phủ định lẫn nhau, kết quả phải đúng. Muốn vậy cần rèn cho học sinh có thói quen sau khi giải xong cần thử lại kết quả và tìm hết các nghiệm của bài toán, tránh bỏ sót nhất là đối với phương trình bậc hai. Ví dụ: ( Giúp học tốt đại số 9) Một tàu thuỷ chạy trên một khúc sông dài 80 km. Cả đi và về mất 8 giờ 20 phút. Tính vận tốc của tàu thuỷ khi nước yên lặng. Biết vận tốc của dòng nước là 4km/h. Hướng dẫn giải Gọi vận tốc của tàu thuỷ khi nước yên lặng là x km/h (x > 0). Vận tốc của tàu thuỷ khi xuôi dòng là: x + 4 ( km/h). Vận tốc của tàu thuỷ khi ngược dòng là: x - 4 (km/h). Theo bài ra ta có phương trình: 5x2 - 96x - 80 = 0 Giải phương trình tìm được : x = ; x = 20 Đến đây học sinh dễ bị hoang mang vì ra hai kết quả không biết lấy kết quả nào. Vì vậy, giáo viên cần xây dựng cho các em có thói quen đối chiếu kết quả với điều kiện của đề bài. Nếu đảm bảo với điều kiện của đề bài thì các nghiệm đều hợp lý, nếu không đảm bảo với điều kiện thì nghiệm đó loại (chẳng hạn ở ví dụ trên với x = < 0 là không đảm bảo với điều kiện nên loại). Một bài toán không nhất thiết duy nhất một kết qủa và được kiểm chứng lại bằng việc thử lại tất cả các kết quả đó với yêu cầu của bài toán. 2.2.2.2. Phân loại dạng toán giải bài toán bằng cách lập phương trình và các giai đoạn giải một bài toán: * Phân loại bài toán giải bằng cách lập phương trình: Trong số các bài tập về giải bài toán bằng cách lập phương trình ta có thể phân loại thành các dạng như sau: 1/ Dạng bài toán về chuyển động. 2/ Dạng toán liên quan đến số học. 3/ Dạng toán về năng suất lao động. 4/ Dạng toán về công việc làm chung, làm riêng. 5/ Dạng toán về tỉ lệ chia phần. 6/ Dạng toán có liên quan đến hình học. 7/ Dạng toán có liên quan đến vật lí, hoá học. 8/ Dạng toán có chứa tham số. Các giai đoạn giải một bài toán * Giai đoạn 1: Đọc kỹ đề bài rồi ghi giả thiết, kết luận của bài toán * Giai đoạn 2: Nêu rõ các vấn đề liên quan để lập phương trình. Tức là chọn ẩn như thế nào cho phù hợp, điều kiện của ẩn thế nào cho thoả mãn. * Giai đoạn 3: Lập phương trình. Dựa vào các quan hệ giữa ẩn số và các đại lượng đã biết, dựa vào các công thức, tính chất để xây dựng phương trình, biến đổi tương đương để đưa phương trình đã xây dựng về phương trình ở dạng đã biết, đã giải được. * Giai đoạn 4: Giải phương trình. Vận dụng các kỹ năng giải phương trình đã biết để tìm nghiệm của phương trình. * Giai đoạn 5: Nghiên cứu nghiệm của phương trình để xác định lời giải của bài toán. Tức là xét nghiệm của phương trình với điều kiện đặt ra của bài toán, với thực tiễn xem có phù hợp không? Sau đó trả lời bài toán. * Giai đoạn 6: Phân tích biện luận cách giải. Phần này thường để mở rộng cho học sinh tương đối khá, giỏi sau khi đã giải xong có thể gợi ý học sinh biến đổi bài toán đã cho thành bài toán khác bằng cách: - Giữ nguyên ẩn số thay đổi các yếu tố khác. - Giữ nguyên các dữ kiện thay đổi các yếu tố khác. - Giải bài toán bằng cách khác, tìm cách giải hay nhất. Ví dụ: (SGK đại số 8) Nhà bác Điền thu hoạch được 480kg cà chua và khoai tây. Khối lượng khoai gấp ba lần khối lượng cà chua. Tính khối lượng mỗi loại ? Hướng dẫn giải * Giai đoạn 1: Giả thiết Khoai + cà chua = 480kg. Khoai = 3 lần cà chua. Kết luận Tìm khối lượng khoai ? Khối lượng cà chua ? * Giai đoạn 2: Thường là điều chưa biết gọi là ẩn. Nhưng ở bài này cả khối lượng cà chua và khối lượng khoai tây đều chưa biết nên có thể gọi ẩn là một trong hai loại đó. Cụ thể: Gọi khối lượng khoai là x (kg), điều kiện x > 0. Thì khối lượng cà chua sẽ là: 480 - x (kg). * Giai đoạn 3: Vì khối lượng khoai gấp 3 lần khối lượng cà nên ta có phương trình: x = 3.(480 - x ) * Giai đoạn 4: Giải phương trình bậc nhất trên được x = 360 (kg) * Giai đoạn 5: Đối chiếu nghiệm đã giải với điều kiện đề ra xem mức độ thoả mãn hay không thoả mãn. ở đây x = 360 > 0 nên thoả mãn: Từ đó kết luận: Khối lượng khoai đã thu hoach được là 360 (kg) Khối lượng cà chua đã thu được là 480 - 360 = 120 (kg) * Giai đoạn 6: Nên cho học sinh nhiều cách giải khác nhau do việc chọn ẩn khác nhau dẫn đến lập các phương trình khác nhau từ đó tìm cách giải hay nhất, ngắn gọn nhất như đã trình bày ở trên Có thể từ bài toán này xây dựng thành các bài toán tương tự như sau: - Thay lời văn và tình tiết bài toán giữ nguyên số liệu ta dược bài toán sau "Một phân số có tổng tử và mẫu là 480. Biết rằng mẫu gấp ba lần tử số. Tìm phân số đó". - Thay số liệu giữ nguyên lời văn. - Thay kết luận thành giả thiết và ngược lại ta có bài toán sau "Tuổi của cha gấp ba lần tuổi của con, biết rằng tuổi của con bằng 12. Tìm tổng số tuổi của cả cha và con"... Bằng cách đó có thể xây dựng cho học sinh có thói quen tập hợp các dạng bài toán tương tự và cách giải tương tự đến khi gặp bài toán học sinh sẽ nhanh chóng tìm ra cách giải. 2.2.2.3 Hướng dẫn học sinh giải các dạng toán Dạng toán chuyển động * Bài toán: (SGK đại số 9) Quãng đường AB dài 270 km, hai ô tô khởi hành cùng một lúc đi từ A đến b, ô tô thứ nhất chạy nhanh hơn ô tô thứ hai 12 km/h nên đến trước ô tô thứ hai 42 phút . Tính vận tốc mỗi xe. * Hướng dẫn giải: - Trong bài này cần hướng dẫn học sinh xác định được vận tốc của mỗi xe. Từ đó xác định thời gian đi hết quãng đường của mỗi xe. - Thời gian đi hết quãng đường của mỗi xe bằng quãng đường AB chia cho vận tốc của mỗi xe tương ứng. - Xe thứ nhất chạy nhanh hơn nên thời gian đi của xe thứ hai trừ đi thời gian đi của xe thứ nhất bằng thời gian xe thứ nhất về sớm hơn xe thứ hai (42 phút = giờ) * Lời giải: Gọi vận tốc của xe thứ nhất là x (km/h, x > 12 ). Thì vận tốc của xe thứ hai là; x - 12 (km/h ). Thời gian đi hết quãng đường AB của xe thứ nhất là (giờ). Của xe thứ hai là ( giờ ). Theo bài ra ta có phương trình: 2700x - 2700.(x -12) = 7x.(x -12) 7x2 - 84x - 32400 = 0 Giải phương trình ta được x 74,3; x - 62,3 (loại) Vậy, vận tốc của xe thứ nhất là 74,3km/h. Vận tốc của xe thứ hai là 62,3km/h. * Chú ý: - Trong dạng toán chuyển động cần cho học sinh nhớ và nắm chắc mối quan hệ giữa các đại lượng: Quãng đường, vận tốc, thời gian (S = v.t). Do đó, khi giải nên chọn một trong ba đại lượng làm ẩn và điều kiện luôn dương. Xây dựng chương trình dựa vào bài toán cho. - Cần lưu ý trong dạng toán chuyển động cũng có thể chia ra nhiều dạng và lưu ý: + Nếu chuyển động trên cùng một quãng đường thì vận tốc và thời gian tỉ lệ nghịch với nhau + Nếu thời gian của chuyển động đến chậm hơn dự định thì cách lập phương trình như sau: Thời gian dự định đi với vận tốc ban đầu cộng thời gian đến chậm bằng thời gian thực đi trên đường. Nếu thời gian của dự định đến nhanh hơn dự định thì cách lập phương trình làm ngược lại phần trên. - Nếu chuyển động trên một đoạn đường không đổi từ A đến B rồi từ B về A thì thời gian cả đi lẫn về bằng thời gian thực tế chuyển động. - Nếu hai chuyển động ngược chiều nhau, sau một thời gian hai chuyển động gặp nhau thì có thể lập phương trình: S + S = S. Dạng toán liên quan đến số học: * Bài toán: (SGK đại số 8) Một số tự nhiên có hai chữ số, tổng các chữ số bằng . Nếu thêm chữ số 0 vào giữa hai chữ số thì được số lớn hơn số đã cho là 180. Tìm số đã cho. * Hướng dẫn giải: - Để tìm số đã cho tức là ta phải tìm được những thành phần nào (chữ số hàng chục và chữ số hàng đơn vị ). Số đó có dạng như thế nào? - Nếu biết được chữ số hàng chục thì có tìm được chữ số hàng đơn vị không? Dựa trên cơ sở nào? - Sau khi viết chữ số 0 vào giữa hai số ta được một số tự nhiên như thế nào ? lớn hơn số cũ là bao nhiêu? * Lời giải Gọi chữ số hàng chục của chữ số đã cho là x , điều kiện 0 < x 7 và x N. Thì chữ số hàng đơn vị của số đã cho là: 7 - x Số đã cho có dạng: = 10x + 7 - x = 9x + 7 Viết thêm chữ số 0 vào giữa hai chữ số hàng chục và hàng đơn vị ta được số mới có dạng : = 100x + 7 - x = 99x + 7 Theo bài ra ta có phương trình: ( 99x + 7 ) - ( 9x + 7 ) = 180 90x = 180 x = 2 Thoả mãn điều kiện. Vậy: chữ số hàng chục là 2 chữ số hàng đơn vị là 7 - 2 = 5 số phải tìm là 25 * Chú ý: - Với dạng toán liên quan đến số học cần cho học sinh hiểu được mối liên hệ giữa các đại lượng đặc biệt hàng đơn vị, hàng chục, hàng trăm... Biểu diễn dưới dạng chính tắc của nó: = 10a + b. = 100a + 10b + c. .................... - Khi đổi chỗ các chữ số hàng trăm, chục, đơn vị ta cũng biểu diễn tương tự như vậy. Dựa vào đó ta đặt điều kiện ẩn số sao cho phù hợp. Dạng toán về năng suất lao động: * Bài toán: ( SGK đại số 9) Trong tháng giêng hai tổ sản xuất được 720 chi tiết máy. Trong tháng hai tổ một vượt mức 15%, tổ hai vượt mức 12% nên sản xuất được 819 chi tiết máy, tính xem trong tháng giêng mỗi tổ sản xuất được bao nhiêu chi tiết máy? * Hướng dẫn giải: - Biết số chi tiết máy cả hai tổ trong tháng đầu là 720. Nếu biết được một trong hai tổ sẽ tính được tổ kia. - Đã biết được số chi tiết máy của tháng đầu, sẽ tính được số chi tiết máy sản xuất được của tháng kia. - Tính số chi tiết máy sản xuất vượt mức trong tháng sau từ đó xây dựng phương trình. * Lời giải: Gọi số chi tiết máy tổ 1 sản xuất trong tháng đầu là x (chi tiết ) Điều kiện x nguyên dương, x < 720 Khi đó tháng đầu tổ 2 sản xuất được: 720 - x ( chi tiết ). Tháng 2 tổ một sản xuất vượt mức ( chi tiết ). Tháng 2 tổ hai sản xuất vượt mức ( chi tiết ). Số chi tiết máy tháng 2 cả hai tổ vượt mức: 819 - 720 = 99 ( chi tiết ) Theo bài ra ta có phương trình: = 99 15x + 8640 - 12x = 9900 3x = 9900 - 8640 3x = 1260 x = 420 (thoả mãn). Vậy, trong tháng giêng tổ một sản xuất được 420 chi tiết máy, Tổ hai sản xuất được 720 - 420 = 300 chi tiết máy. * Chú ý: Loại toán này tương đối khó giáo viên cần gợi mở dần dần để học sinh hiểu rõ bản chất nội dung của bài toán để dẫn tới mối liên quan xây dựng phương trình và giải phương trình như các loại toán khác. Khi gọi ẩn, điều kiện của ẩn cần lưu ý bám sát ý nghĩa thực tế của bài toán. Dạng toán về công việc làm chung, làm riêng: * Bài toán ( SGK đại số 8). Hai đội công nhân cùng sửa một con mương hết 24 ngày. Mỗi ngày phần việc làm được của đội 1 bằng 1 phần việc của đội 2 làm được. Nếu làm một mình, mỗi đội sẽ sửa xong con mương trong bao nhiêu ngày? * Hướng dẫn giải: - Trong bài này ta coi toàn bộ công việc là một đơn vị công việc và biểu thị bằng số 1. - Số phần công việc trong một ngày nhân với số ngày làm được là 1. * Lời giải: Gọi số ngày một mình đội 2 phải làm để sửa xog con mương là x ( ngày) Điều kiện x > 0 . Trong một ngày đội 2 làm được công việc. Trong một ngày đội 1 làm được 1 (công việc ). Trong một ngày cả hai đội làm được công việc. Theo bài ra ta có phương trình: 24 + 36 = x x = 60 thoả mãn điều kiện Vậy, thời gian đội 2 làm một mình sửa xong con mương là 60 ngày. Mỗi ngày đội 1 làm được công việc. Để sửa xong con mương đội 1 làm một mình trong 40 ngày. * Chú ý: ở loại toán này, học sinh cần hiểu rõ đề bài, đặt đúng ẩn, biểu thị qua đơn vị quy ước. Từ đó lập phương trình và giải phương trình. Dạng toán về tỉ lệ chia phần: * Bài toán: (SGK đại số 8). Hợp tác xã Hồng Châu có hai kho thóc, kho thứ nhất hơn kho thứ hai 100 tấn. Nếu chuyển từ kho thứ nhất sang kho thứ hai 60 tấn thì lúc đó số thóc ở kho thứ nhất bằng số thóc ở kho thứ hai. Tính số thóc ở mỗi kho lúc đầu. * Hướng dẫn giải: Quá trình Kho I Kho II Trước khi chuyển x + 100 (tấn) x (tấn ), x > 0 Sau khi chuyển x +100 - 60 (tấn ) x + 60 ( tấn ) Phương trình: x + 100 - 60 = . (x + 60 ) * Lời giải: Gọi số thóc ở kho thứ hai lúc đầu là x (tấn ), x > 0. Thì số thóc ở kho thứ nhất lúc đầu là x + 100 (tấn ). Số thóc ở kho thứ nhất sau khi chuyển là x +100 -60 ( tấn ). Số thóc ở kho thứ hai sau khi chuyển là x + 60 ( tấn ). Theo bài ra ta có phương : x + 100 - 60 = Giải phương trình tìm được: x = 200 thoả mãn điều kiện. Vậy, kho thóc thứ hai lúc đầu có 200 tấn thóc Kho thóc thứ nhất lúc đầu có 200 + 100 = 300 tấn thóc. Dạng toán có liên quan đến hình học: * Bài toán: (SGK đại số lớp 9). Một khu vườn hình chữ nhật có chu vi là 280 m. Người ta làm một lối đi xung quanh vườn (thuộc đất của vườn) rộng 2m, diện tích đất còn lại để trồng trọt là 4256 m2. Tính kích thước của vườn. * Hướng dẫn giải: - Nhắc lại công thức tính chu vi và diện tích của hình chữ nhật. - Vẽ hình minh hoạ để tìm lời giải. * Lời giải: Gọi độ dài một cạnh hình chữ nhật là x ( m ), điều kiện 4 < x < 140 Độ dài cạnh còn lại là: 140 - x (m ). Khi làm lối đi xung quanh, độ dài các cạnh của phần đất trồng trọt là x - 4(m) và 140 - x - 4 = 136 - x (m). Theo bài ra ta có phương trình: ( x - 4 ).( 136 - x ) = 4256 140x - x2 - 544 = 4256 x2 - 140x - 4800 = 0 Giải phương trình tìm được x = 80; x = 60 (thoả mãn). Vậy kích thước của mảnh vườn hình chữ nhật là 60m và 80m. Toán có nội dung vật lý, hoá học: * Bài toán: Người ta hoà lẫn 8g chất lỏng này với 6g chất lỏng khác có khối lượng nhỏ hơn nó 200kg/m3 để được một hỗn hợp có khối lượng riêng là 700kg/m3. Tìm khối lượng riêng của mỗi chất lỏng? * Hướng dẫn giải: - Để giải bài toán ta cần chú ý khối lượng riêng của mỗi chất được tính theo công thức: D = V = Trong đó: m là khối lượng tính bằng kg V là thể tích của vật tính bằng m3 D là khối lượng riêng tính bằng kg/m3 * Lời giải: Gọi khối lượng riêng của chất thứ nhất là x (kg/m3), điều kiện x > 200 Thì khối lượng riêng của chất thứ hai là: x – 200 (kg/m3) Thể tích của chất thứ nhất là: (m3) Thể tích của chất thứ hai là: ( m3 ). Thể tích của khối chất lỏng hỗn hợp là: ( m3). Trước và sau khi trộn thì tổng thể tích của hai chất lỏng không đổi, nên ta có phương trình: Giải phương trình ta được: x = 800 thoả mãn điều kiện x = 100 ( loại ). Vậy khối lượng riêng của chất thứ nhất là 800 kg/m3 Khối lượng riêng của chất thứ hai là 600 kg/m3. Dạng toán có chứa tham số. * Bài toán: (SGK đại số lớp 8). Thả một vật rơi tự do, từ một tháp xuống đất. Người ta ghi được quãng đường rơi S (m) theo thời gian t (s) như sau: t ( s ) 1 2 3 4 5 S (m ) 5 20 45 80 125 a, Chứng tỏ quãng đường vật rơi tỉ lệ với bình phương thời gian tương ứng. Tính hệ số tỉ lệ đó? b, Viết công thức biểu thị quãng đường vật rơi theo thời gian. * Lời giải: a, Dựa vào bảng trên ta có: ; ; ; ; Vậy Chứng tỏ quãng đường vật rơi tỉ lệ với bình phương thời gian. b, Công thức: Kết luận: Trên đây tôi đã đưa ra được 8 dạng toán thường gặp ở chương trình THCS (lớp 8 và lớp 9). Mỗi dạng toán có những đặc điểm khác nhau và trong mỗi dạng ta còn chia nhỏ ra hơn nữa. Việc chia dạng trên đây chủ yếu dựa vào lời văn để phân loại nhưng đều chung nhau ở các bước giải cơ bản của loại toán "Giải bài toán bằng cách lập phương trình". Mỗi dạng toán, tôi chọn một số bài toán điển hình có tính chất giới thiệu về việc thiết lập phương trình: + Phương trình bậc nhất một ẩn. + Phương trình bậc hai một ẩn. Tuy nhiên, các ví dụ đó chỉ mang tính chất tương đối. Chương III: Phương pháp nghiên cứu 2.3.1. Phương pháp nghiên cứu: Tôi đã chọn các phương pháp nghiên cứu sau: Tham khảo tài liệu về một số bài soạn mẫu trong quyển một số vấn đề đổi mới phương pháp dạy học ở trường trung học cơ sở Tham khảo ý kiến cũng như phương pháp dạy của đồng nghiệp thông qua các buổi sinh hoạt chuyên môn, dự giờ thăm lớp. Điều tra khảo sát kết quả học tập của học sinh. Thực nghiệm dạy học lớp 8, lớp 9 ở trường THCS. Đánh giá kết quả học tập của học sinh sau khi dạy thực nghiệm. 2.3.2. Đánh giá thực trạng - Đại đa số học sinh chưa xác định đúng mục đích của việc học. - Chất lượng đầu vào thấp, học sinh không có sự ôn luyện hè ở nhà. - Nhận thức của học sinh quá chậm. - Học sinh quá lười học bài. - Học sinh còn chịu ảnh hưởng của bệnh thành tích ở những năm trước không cần học cũng vẫn lên lớp. - Giáo viên chưa có nhiều thời gian và biện pháp hữu hiệu để phụ đạo học sinh yếu kém. - Hội cha mẹ học sinh chưa quan tâm đến việc học tập của con em mình ... 2.3.3. Đề xuất biện pháp: - Mỗi giáo viên cần thực hiên tốt cuộc vận động: Nói không với bệnh thành tích và tiêu cực trong thi cử và không để học sinh ngồi nhầm lớp. - Tăng cường quản học sinh trong các giờ tự học, đồng thời tăng thời gian phụ đạo học sinh yếu kém, tìm ra những chỗ học sinh bị hổng để phụ đạo. - Lập ra cán sự bộ môn để kiểm tra và hướng dẫn các tổ nhóm làm bài tập, phân công học sinh khá kèm cặp học sinh yếu dưới sự giám sát của giáo viên. - Tạo ra hứng thú cho học sinh trong các giờ học. - Hướng dẫn học sinh cách học bài, làm bài, nghiên cứu trước bài mới ở nhà. III. phần kết luận và kiến nghị 3.1. Kết luận: Đại đa số các em sau khi quen với loại toán "Giải bài toán bằng cách lập phương trình", đã nắm được các dạng toán và phương pháp giải từng dạng, các em biết trình bày đầy đủ, khoa học, lời giải chặt chẽ, rõ ràng, các em bình tĩnh, tự tin và cảm thấy thích thú khi giải loại toán này. Do điều kiện và năng lực của bản thân tôi còn hạn chế, các tài liệu tham khảo chưa đầy đủ nên chắc chắn còn những điều chưa chuẩn, những lời giải chưa phải là hay và ngắn gọn nhất. Nhưng tôi mong rằng đề tài này ít nhiều cũng giúp học sinh hiểu kỹ hơn về loại toán giải bài toán bằng cách lập phương trình. Bằng những kinh nghiệm rút ra sau nhiều năm giảng dạy cùng với sự giúp đỡ tận tình của Ban giám hiệu, tổ chuyên môn nhà trường. Tôi đã hoàn thành đề tài "Rèn kỹ năng giải bài toán bằng cách lập phương trình" cho học sinh lớp 8, 9. Tôi xin chân thành cảm ơn các đồng chí trong Ban giám hiệu nhà trường, cảm ơn các đồng chí trong tổ chuyên môn nhà trường đã giúp tôi hoàn thành đề tài này. Tôi rất mong được sự chỉ bảo của các đồng chí chuyên môn Phòng Giáo dục và Đào tạo, ý kiến đóng góp của các đồng nghiệp để vốn kinh nghiệm giảng dạy của tôi được phong phú hơn. 3.2. Kiến nghị. - Đề nghị hội cha mẹ học sinh cần quan tâm hơn nữa đến việc học tập của con em mình. Tôi xin chân thành cảm ơn !
File đính kèm:
- sang_kien_kinh_nghiem 2010.doc