Sáng kiến kinh nghiệm Một số kinh nghiệm giảng dạy giải bài toán bằng cách lập phương trình

Mục tiêu cơ bản của giáo dục nói chung, của nhà trường nói riêng là đào tạo và xây dựng thế hệ học sinh trở thành những con người mới phát triển toàn diện, có đầy đủ phẩm chất đạo đức, năng lực, trí tuệ để đáp ứng với yêu cầu thực tế hiện nay. Để thực hiện được mục tiêu đó, trước hết chúng ta phải biết áp dụng phương pháp dạy học hiện đại để bồi dưỡng cho học sinh năng lực tư duy sáng tạo, năng lực giải quyết vấn đề, rèn luyện thành nề nếp tư duy sáng tạo của người học, từng bước áp dụng các phương pháp tiên tiến, phương tiện hiện đại vào quá trình dạy học, dành thời gian tự học, tự nghiên cứu cho học sinh. Đồng thời bản thân mỗi giáo viên cũng phải tự tìm ra những phương pháp mới, khắc phục lối truyền thụ một chiều, phát huy tính tích cực, tự giác, chủ động, sáng tạo của học sinh trong các môn học, đặc biệt là môn toán.

doc25 trang | Chia sẻ: sangkien | Lượt xem: 2517 | Lượt tải: 4Download
Bạn đang xem 20 trang mẫu của tài liệu "Sáng kiến kinh nghiệm Một số kinh nghiệm giảng dạy giải bài toán bằng cách lập phương trình", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
 bao nhiêu chó? 
	Hướng dẫn : Với bài toán này nếu giải như sau:
Gọi số gà là x (0<x <36 0, x nguyên dương)
Thì số chó sẽ là: 36 -x (con)
Gà có 2 chân nên số chân gà là: 2x chân .
Chó có 4 chân nên số chân chó là: 4. (36 -x) chân.
Theo bài ra ta có phương trình: 2x + 4. (36 -x ) = 100
Giải phương trình ta được: x =22 thoả mãn điều kiện.
Vậy: Số gà là 22 con. 
Số chó là: 36 - 22 = 14 (con)
Thì bài toán sẽ ngắn gọn, rễ hiểu. Nhưng có học sinh giải theo cách :
Gọi số chân gà là x, suy ra số chân chó là 100 - x
Theo bài ra ta có phương trình: 
Giải phương trình cũng được kết quả là 22 con gà và 14 con chó.
Nhưng đã vô hình biến thành bài giải khó hiểu hoặc không phù hợp với trình độ của học sinh.
* Yêu cầu 5 : Lời giải phải trình bày khoa học. 
Khi giải bài toán bằng cách lập phương trình chúng ta cần lập luận dựa vào các dữ kiện của đề bài. Tuy nhiên khi lập luận trình bày lời giải cần phải có thứ tự, vấn đề nào cần lập luận trước, vấn đề nào cần lập luận sau. Giữa các bước lập luận biểu diễn sự tương quan giữa các đại lượng phải logic, chặt chẽ với nhau, bước sau là sự kế thừa của bước trước, bước trước nêu ra nhằm chủ ý cho bước sau tiếp nối. Không nên diễn giải lung tung, không có trình tự, dài dòng giữa các bước. Có như vậy thì lời giải của bài toán mới được trình bày một cách khoa học, gây hứng thú người xem, đặc biệt là gây nên sự thích thú đối với giáo viên khi chấm bài cho học sinh.
Ví dụ : Bài tập 36 sách luyện giải và ôn tập toán 8 của Vũ Dương Thụy
Một người đi bộ từ A đến B với vận tốc dự định 4 km/h. Sau khi đi được nửa quãng đường AB với vận tốc đó, người ấy đi bằng ô tô với vận tốc 30 km/h, do đó đã đến B sớm hơn dự định 2 giờ 10 phút. Tính chiều dài quãng đường AB.
Giải: 	Đổi 2 giờ 10 phút = giờ
Gọi chiều dài quãng đường AB là x (km), (x > 0)
Thời gian người đó đi nửa quãng đường AB với vận tốc 4 km/h là 
	 (giờ)
Thời gian người đó đi quãng đường còn lại với vận tốc 30 km/h là
	 (giờ)
Theo đề bài, người đó đến B trước 2 giờ 10 phút (giờ)nên ta có phương trình :
Giải phương trình, tìm được x = 20 (thỏa mãn điều kiện của ẩn)
Trả lời : Quãng đường AB dài 20 km
	Trên đây là 5 yêu cầu quan trọng khi thực hiện giải bài toán bằng cách lập phương trình mà giáo viên cần lưu ý cho học sinh. Ngoài việc nhắc nhở học sinh nắm vững các bước giải bài toán bằng cách lập phương trình, nắm vững các yêu cầu đặt ra trong việc giải toán, học sinh là đối tượng để giải tốt các bài tập, nhưng việc quan trọng nhất trong thành công dạy học vẫn là do người giáo viên. Để học sinh học được tốt, hiểu được bài, vận dụng được lý thuyết để giải bài tập thì trước hết giáo viên phải soạn bài thật tốt, chuẩn bị một hệ thống các câu hỏi phù hợp, một số bài tập trắc nghiệm, tự luận đơn giản phù hợp với từng đối tượng học sinh. Phân tích thật rõ ràng và tỉ mỉ các ví dụ trong sách giáo khoa ở các tiết dạy trên lớp hoặc phân tích thật kĩ các bài tập mẫu cho học sinh qua các giờ học tự chọn để làm nền tảng cho học sinh giải các bài tập khác. Mặt khác giáo viên có thể chia học sinh thành các nhóm nhỏ, mỗi nhóm có một nhóm trưởng tổ chức thảo luận các bài tập mẫu để các em học sinh yếu kém có thể hiểu được bài một cách sâu hơn, giúp các em có thể giải được một số bài tập tương tự, làm cho các em không chán nản, không ngại khó khi giải bài tập giải bài toán bằng cách lập phương trình. Từ đó giúp các em có hứng thú giải những bài tập dạng khó hơn. Do vậy giáo viên cần phải cho học sinh những bài tập tương tự để các em tự làm và cũng cần phải phân loại rõ ràng cho học sinh từng dạng toán giải bài toán bằng cách lập phương trình để từ đó học sinh có thể chọn ẩn và đặt điều kiện thích hợp cho ẩn. Cụ thể, giáo viên có thể phân loại thành 8 dạng như sau :
- Dạng toán liên quan đến số học. 
	- Dạng toán về chuyển động.
	- Dạng toán về công việc làm chung, làm riêng.
	- Dạng toán về năng suất lao động.
	- Dạng toán về tỉ lệ chia phần.
	- Dạng toán có liên quan hình học.
	- Dạng toán có nội dung vật lí, hoá học.
	- Dạng toán có chứa tham số.
* Dạng 1 : Dạng toán liên quan đến số học.
Ở chương trình đại số lớp 8, các em cũng thường gặp loại bài tìm một số tự nhiên có hai chữ số, đây cũng là loại toán tương đối khó đối với các em; để giúp học sinh đỡ lúng túng khi giải loại bài này thì trước hết phải cho các em nắm được một số kiến thức liên quan như :
- Cách viết số trong hệ thập phân.
- Mối quan hệ giữa các chữ số, vị trí giữa các chữ số trong số cần tìm; điều kiện của các chữ số.
Ví dụ : “Một số tự nhiên có hai chữ số, tổng các chữ số của nó là 16, nếu đổi chỗ hai chữ số cho nhau được một số lớn hơn số đã cho là 18 đơn vị. Tìm số đã cho.
Học sinh phải nắm được :
- Số cần tìm có mấy chữ số ?(2 chữ số).
- Quan hệ giữa chữ số hàng chục và hàng đơn vị như thế nào?
- Vị trí các chữ số thay đổi thế nào?
- Số mới so với ban đầu thay đổi ra sao?
- Muốn biết số cần tìm, ta phải biết điều gì? (Chữ số hàng chục, chữ số hàng đơn vị).
	- Đến đây ta dễ dàng giải bài toán, thay vì tìm số tự nhiên có hai chữ số ta đi tìm chữ số hàng chục, chữ số hàng đơn vị; ở đây tùy ý lựa chọn ẩn là chữ số hàng chục (hoặc chữ số hàng đơn vị).
	Nếu gọi chữ số hàng chục là x 
	Điều kiện của x ? (xN, 0 < x < 10).
	Chữ số hàng đơn vị là : 16 – x
	Số đã cho được viết 10x + 16 - x = 9x + 16
	Đổi vị trí hai chữ số cho nhau thì số mới được viết :
	10 ( 16 – x ) + x = 160 – 9x
	Số mới lớn hơn số đã cho là 18 nên ta có phương trình :
	(160 – 9x) – (9x + 16) = 18
	- Giải phương trình ta được x = 7 (thỏa mãn điều kiện).
	Vậy chữ số hàng chục là 7.
	Chữ số hàng đơn vị là 16 – 7 = 9.
	Số cần tìm là 79.
* Dạng 2 : Dạng toán về chuyển động
Ở chương trình lớp 8 thường gặp các bài toán về dạng chuyển động ở dạng đơn giản như : Chuyển động cùng chiều, ngược chiều trên cùng quãng đường hoặc chuyển động trên dòng nước.
	Do vậy, trước tiên cần cho học sinh nắm chắc các kiến thức, công thức liên quan, đơn vị các đại lượng.
	Trong dạng toán chuyển động cần phải hiểu rõ các đại lượng quãng đường, vận tốc, thời gian, mối quan hệ của chúng qua công thức s = v.t. Từ đó suy ra:	 
	 ; 
	Hoặc đối với chuyển động trên sông có dòng nước chảy.
	Thì : vxuôi = vThực + v dòng nước
	 vngược = vThực - v dòng nước
Ta xét bài toán sau : Để đi đoạn đường từ A đến B, xe máy phải đi hết 3giờ 30’; ô tô đi hết 2giờ 30’ phút. Tính quãng đường AB. Biết vận tốc ôtô lớn hơn vận tốc xe máy là 20km/h.
Đối với bài toán chuyển động, khi ghi tóm tắt đề bài, đồng thời ta vẽ sơ đồ minh họa thì học sinh dễ hình dung bài toán hơn 
Tóm tắt:
Đoạn đường AB	>
t1 = 3 giờ 30 phút = 3,5 giờ; t2 = 2 giờ 30 phút = 2,5 giờ
v2 lớn hơn v1 là 20km/h (v2 – v1 = 20)
Tính quãng đường AB=?
- Các đối tượng tham gia :(ô tô- xe máy)
- Các đại lượng liên quan : quãng đường , vận tốc , thời gian.
- Các số liệu đã biết:
	+ Thời gian xe máy đi : 3 giờ 30’
	+ Thời gian ô tô đi :2 giờ 30’
	+ Hiệu hai vận tốc : 20 km/h
- Số liệu chưa biết: vxe máy? vôtô? sAB ?
	 Cần lưu ý : Hai chuyển động này trên cùng một quãng đường không đổi. Quan hệ giữa các đại lượng s, v, t được biểu diễn bởi công thức: s = v.t. 	Như vậy ở bài toán này có đại lượng chưa biết, mà ta cần tính chiều dài đoạn AB, nên có thể chọn x (km) là chiều dài đoạn đường AB; điều kiện: x > 0 
	Biểu thị các đại lượng chưa biết qua ẩn và qua các đại lượng đã biết. 
	Vận tốc xe máy :	(km/h)
	Vận tốc ôtô :	(km/h)
	Dựa vào các mối liên hệ giữa các đại lượng(v2 – v1 = 20) 
	 - Giải phương trình trên ta được x = 175. Giá trị này của x phù hợp với điều kiện trên. Vậy ta trả lời ngay được chiều dài đoạn AB là 175km.
	Sau khi giải xong, giáo viên cần cho học sinh thấy rằng : Như ta đã phân tích ở trên thì bài toán này còn có vận tốc của mỗi xe chưa biết, nên ngoài việc chọn quãng đường là ẩn, ta cũng có thể chọn vận tốc xe máy hoặc vận tốc ôtô là ẩn.
	- Nếu gọi vận tốc xe máy là x (km/h) : x > 0
 Thì vận tốc ôtô là x + 20 (km/h)
- Vì quãng đường AB không đổi nên có thể biểu diễn theo hai cách (quãng đường xe máy đi hoặc của ôtô đi).
	- Ta có phương trình : 3,5 x = 2,5 (x + 20)
	Giải phương trình trên ta được: x = 50.
	Đến đây học sinh dễ mắc sai lầm là dừng lại trả lời kết quả bài toán : Vận tốc xe máy là 50 km/h. Do đó cần khắc sâu cho các em thấy được bài toán yêu cầu tìm quãng đường nên khi có vận tốc rồi ra phải tìm quãng đường.
	- Trong bước chọn kết quả thích hợp và trả lời, cần hướng dẫn học sinh đối chiếu với điều kiện của ẩn, yêu cầu của đề bài. Chẳng hạn như bài toán trên, ẩn chọn là vận tốc của xe máy, sau khi tìm được tích bằng 50, thì không thể trả lời bài toán là vận tốc xe máy là 50 km/h, mà phải trả lời về chiều dài đoạn đường AB mà đề bài đòi hỏi.
	Tóm lại : Khi giảng dạng toán chuyển động, trong bài có nhiều đại lượng chưa biết, nên ở bước lập phương trình ta tùy ý lựa chọn một trong các đại lượng chưa biết làm ẩn. Nhưng ta nên chọn trực tiếp đại lượng bài toán yêu cầu cần phải tìm là ẩn. Nhằm tránh những thiếu sót khi trả lời kết quả.
	Song thực tế không phải bài nào ta cũng chọn được trực tiếp đại lượng phải tìm là ẩn mà có thể phải chọn đại lượng trung gian là ẩn. 
- Cần chú ý 1 điều là nếu gọi vận tốc ôtô là x (km/h) thì điều kiện x>0 chưa đủ mà phải x > 20 vì dựa vào thực tế bài toán là vận tốc ôtô lớn hơn vận tốc xe máy là 20 (km/h) 
* Dạng 3 : Dạng toán về công việc làm chung, làm riêng.
- Bài toán : Hai đội công nhân cùng sửa một con mương hết 24 ngày. Mỗi ngày phần việc làm được của đội 1 bằng 1 phần việc của đội 2 làm được. Nếu làm một mình, mỗi đội sẽ sửa xong con mương trong bao nhiêu ngày?
- Hướng dẫn giải:
	+ Trong bài này ta coi toàn bộ công việc là một đơn vị công việc và biểu thị bằng số 1.
	+ Số phần công việc trong một ngày nhân với số ngày làm được là 1.
- Lời giải:
Gọi số ngày một mình đội 2 phải làm để sửa xong con mương là x ( ngày)
Điều kiện x > 0 .
Trong một ngày đội 2 làm được công việc.
Trong một ngày đội 1 làm được 1 (công việc ).
Trong một ngày cả hai đội làm được công việc.
Theo bài ra ta có phương trình:
 24 + 36 = x
 x = 60 thoả mãn điều kiện
Vậy, thời gian đội 2 làm một mình sửa xong con mương là 60 ngày.
Mỗi ngày đội 1 làm được công việc.
Để sửa xong con mương đội 1 làm một mình trong 40 ngày.
Chú ý: Ở loại toán này , học sinh cần hiểu rõ đề bài, đặt đúng ẩn, biểu thị qua đơn vị quy ước. Từ đó lập phương trình và giải phương trình.
* Dạng 4 : Dạng toán về năng suất lao động.
Ví dụ : Trong tháng đầu hai tổ công nhân của một xí nghiệp dệt được 800 tấm thảm len. Tháng thứ hai tổ I vượt mức 15%, tổ 2 vượt mức 20% nên cả hai tổ dệt được 945 tấm thảm len. Tính xem trong tháng thứ hai mỗi tổ đã dệt được bao nhiêu tấm thảm len
	Hướng dẫn : Trong bài toán số tấm thảm len cả hai tổ dệt được trang tháng đầu và trong tháng thứ hai đã biết. Số tấm thảm len mỗi tổ dệt được trong tháng đầu, tháng thứ hai chưa biết. Ta có thể chọn x là số tấm thảm len mà tổ I dệt được trong tháng đầu. Theo mối quan hệ giữa các đại lượng trong đề bài ta có bảng sau :
Số thảm len
Tổ I
Tổ II
Cả hai tổ
Tháng đầu
x
800 - x
800
Tháng thứ hai
945
	Cơ sở để lập phương trình là tổng số tấm thảm len cả hai tổ dệt được trong tháng thứ hai là 945
	Giải : 
Gọi số tấm thảm len tổ I dệt được trong tháng đầu là x (x Î Z+, x < 800)
Trong tháng đầu cả hai tổ dệt được 800 tấm thảm len nên số tấm thảm len tổ II dệt được trong tháng đầu là (800 - x)
Tháng thứ hai tổ I dệt được (tấm thảm)
Tháng thứ hai tổ II dệt được (tấm thảm)
Theo đề bài trong tháng hai cả hai tổ dệt được 945 tấm thảm nên ta có phương trình :
	Giải phương trình, tìm được x = 300 (thỏa mãn điều kiện)
Vậy : Trong tháng thứ hai tổ I dệt được (tấm thảm len), tổ II dệt được (tấm thảm len)
	Chú ý : Bài toán yêu cầu tìm số tấm thảm len tổ I, tổ II dệt được trong tháng thứ hai, trong cách giải trên ta đã không chọn một trong các đại lượng đó làm ẩn mà chọn số tấm thảm len tổ I dệt được trong tháng đầu làm ẩn. Cách chọn ẩn này giúp ta lập và giải phương trình một cách dễ dàng hơn, rồi từ đó suy ra đại lượng cần tìm.
	Như vậy, khi giải bài toán bằng cách lập phương trình, thông thường bài toán yêu cầu tìm đại lượng nào thì nên chọn đại lượng đó làm ẩn (chọn ẩn trực tiếp) nhưng cũng có khi chọn một đại lượng khác làm ẩn (chọn ẩn gián tiếp) nếu cách chọn ẩn này giúp ta giải bài toán một cách thuận lợi hơn.
* Dạng 5 : Dạng toán về tỉ lệ chia phần.
	Ví dụ : Hai đội công nhân cùng tham gia lao động trên một công trường xây dựng. Số người của đội I gấp hai lần số người của đội II. Nếu chuyển 10 người từ đội I sang đội II thì số người ở đội II bằng số người còn lại ở đội I. Hỏi lúc đầu mỗi đội có bao nhiêu người?
Giải : Gọi số người của đội II lúc đầu là x. ĐK : x nguyên dương
Số người của đội I lúc đầu là 2x.
Sau khi chuyển 10 người từ đội I sang đội II thì số người còn lại của đội I là 2x - 10 (người), số người của đội II là x + 10 (người).
Theo đề bài khi đó số người ở đội II bằng số người của đội I nên ta có phương trình :
	x + 10 = (2x - 10)
Giải phương trình, tìm được x = 30 (thỏa mãn điều kiện)
Trả lời : Lúc đầu đội I có 60 người, đội II có 30 người.
* Dạng 6 : Dạng toán có liên quan hình học.
2 cm
3 cm
A
C
B
	Ví dụ : Lan có một miếng bìa hình tam giác ABC vuông tại A, cạnh AB = 3cm. Lan tính rằng nếu cắt từ miếng bìa đó ra một hình chữ nhật có chiều dài 2cm như hình bên thì hình chữ nhật ấy có diện tích bằng một nửa diện tích của miếng bìa ban đầu. Tính độ dài cạnh AC của tam giác ABC
	Giải : Gọi x là độ dài cạnh AC (x Î Z+, cm)
2 cm
3 cm
A
C
B
D
E
G
	Diện tích tam giác ABC là 3x (cm2)
	Diện tích hình chữ nhật ADEG là cm2 và chiều rộng hình chữ nhật là :2 = cm.
Diện tích hình chữ nhật bằng tổng diện tích hai tam giác BDE và CEG và ta có phương trình :
	SADGE = SBDE + SCEG
Û 
Û 
x = 4
Vậy : Cạnh AC của tam giác ABC có độ dài 4cm.
* Dạng 7 : Dạng toán có nội dung vật lý, hóa học
	Để lập được phương trình, ta phải dựa vào các công thức, định luật của vật lý, hóa học liên quan đến những đại lượng có trong đề toán.
	Ví dụ : Biết rằng 200g một dung dịch chứa 50g muối. Hỏi phải pha thêm bao nhiêu gam nước vào dung dịch đó để được một dung dịch chứa 20% muối?
	Giải : Gọi x là lượng nước cần pha thêm vào dung dịch đã cho (x > 0, g)
	Khi đó lượng dung dịch nước là 200 + x.
	Nồng độ dung dịch là 
	Theo đề bài ta có phương trình : 	
	Û 20(150 + x) = 5000
	Û	x = 100
	Vậy : Lượng nước cần pha thêm là 100 g
* Dạng 8 : Dạng toán có chứa tham số 
	Ví dụ : Bà An gửi vào quỹ tiết kiệm x nghìn đồng với lãi suất mỗi tháng là a% (a là một số cho trước) và lãi tháng này được tính gộp vào vống cho tháng sau.
	a. Hãy viết biểu thức biểu thị :
	+ Số tiền lãi sau tháng thứ nhất;
	+ Số tiền (cả gốc lẫn lãi) có được sau tháng thứ nhất;
	+ Tổng số tiền lãi có được sau tháng thứ hai.
	b. Nếu lãi suất là 1,2% (tức là a = 1,2) và sau 2 tháng tổng số tiền lãi là 48,288 nghìn đồng, thì lúc đầu bà An đã gửi bao nhiêu tiền tiết kiệm?
	Giải : 
Số tiền lãi sau một tháng gửi với lãi suất a% với tiền gửi x nghìn đồng là ax. Số tiền có được (cả gốc lẫn lãi) sau tháng thứ nhất : x + ax = x (1 + a) nghìn đồng.
Số tiền lại sau hai tháng là : L = ax + ax(1+a) = x(a2 + 2a)
Thay a = 1,2% là L = 48,288 ta được :
 nghìn đồng
 Þ x = 2000000 đồng
Trên đây là 8 dạng toán thường gặp ở chương trình toán 8. Mỗi dạng toán có những đặc điểm khác nhau và còn có thể chia thành các dạng nhỏ trong mỗi dạng. Tuy nhiên, ở mỗi dạng tôi chỉ lấy một ví dụ điển hình để giới thiệu, hướng dẫn cụ thể cách giải, giúp học sinh có kỹ năng lập phương trình bài toán.
2. Kết quả đạt được :
Tôi đã tự tìm ra các phương pháp và thực hiện nghiên cứu đối với học sinh lớp 8A trong năm học 2009 - 2010. Đầu năm học, tôi nhận thấy lớp 8A có rất nhiều học sinh yếu, đặc biệt là môn toán, điều này đã làm tôi rất băn khoăn, trăn trở. Cụ thể qua bài kiểm tra khảo sát môn toán đầu năm của lớp 8A, tôi đã ghi nhận kết quả như sau :
Điểm
Lớp
Sĩ số
Giỏi
Khá
T. Bình
Yếu
Kém
8A
31
0
2 = 6,5 %
18 = 58%
11 = 35,5%
0
Sang đến học kỳ II, khi học đến chương III (phương trình bậc nhất một ẩn), phần giải bài toán bằng cách lập phương trình, tôi cũng đã thực hiện khảo sát đối với học sinh lớp 8A và kết quả là :
Điểm
Lớp
Sĩ số
Giỏi
Khá
T. Bình
Yếu
Kém
8A
31
0
4 = 12,9 %
19 = 61,3%
8 = 25,8%
0
Qua kết quả khảo sát đó tôi đã cố gắng giảng dạy cho các em, và dần dần tôi đã thấy được sự tiến bộ của học sinh qua việc giải bài tập. Tôi nhận thấy hầu hết các em đã biết trình bày bài toán dạng này. Phần lớn học sinh đã có hứng thú giải những bài toán bằng cách lập phương trình. Các em không còn lúng túng khi lập phương trình nữa. Các em đã biết chuyển đổi các vấn đề từ ngôn ngữ văn học sang ngôn ngữ toán học thông qua các phép toán, biểu thức, phương trình.... Nhiều em khá giỏi đã tìm ra được cách giải hay và ngắn gọn phù hợp.	Tuy vậy bên cạnh những kết quả đạt được thì vẫn còn một số ít học sinh học yếu , lười học, chưa có khả năng tự mình giải được những bài toán bằng cách lập phương trình. Đối với các em yếu, đây là một việc thực sự khó khăn. Một phần cũng là do khả năng học toán của các em còn hạn chế, mặt khác dạng toán này lại rất khó, đòi hỏi sự tư duy nhiều ở các em. 
	Cụ thể kết quả đạt được ở bài kiểm tra học kỳ II như sau :
Điểm
Lớp
Sĩ số
Giỏi
Khá
T. Bình
Yếu
Kém
8A
31
8 = 25,8%
10 = 32,2 %
11 = 35,5%
2 = 6,5%
0
Kết quả đó là một sự bất ngờ đối với bản thân tôi. Tôi không dám chắc chắn rằng những biện pháp mà tôi đã đưa ra là tối ưu nhất, hiệt quả nhất, nhưng kết quả mà học sinh đạt được qua quá trình tôi giảng dạy thật sự là niềm vui, niềm hứng thú đối với tôi trong công tác.
IV/- KẾT LUẬN :
1. Tóm lược giải pháp :
Từ thực tế nghiên cứu giảng dạy, tôi nhận thấy việc giảng dạy giải bài toán bằng cách lập phương trình có ý nghĩa thực tế rất cao. Nó rèn luyện cho học sinh tư duy logic, khả năng sáng tạo, khả năng diễn đạt chính xác nhiều quan hệ toán học,  Do đó khi giải dạng toán này ở lớp 8, giáo viên vần lưu ý học sinh đọc kỹ đề bài, nắm được các mối quan hệ đã biết và chưa biết giữa các đại lượng để lập phương trình. Các bài toán, ví dụ được nêu lên đều chủ yếu là toán bậc nhất, nghĩa là các bài toán dẫn đến phương trình có thể quy về bậc nhất. Lên đến lớp 9 thì việc giải bài toán bằng cách lập phương trình cũng tuân theo các bước như ở lớp 8 nhưng phương trình có thể quy về phương trình bậc hai hoặc hệ phương trình. Vì thế giáo viên cần phân tích kỹ các bước giải, cũng như lưu ý rõ cho học sinh các yêu cầu trong khi giải và từng dạng toán cơ bản để học sinh có được kiến thức vững chắc phục vụ cho việc giải toán ở lớp 9. Bên cạnh đó, giáo viên cũng tạo hứng thú cho học sinh trong các giờ học, hướng dẫn học sinh cách học bài, làm bài và cách nghiên cứu trước bài mới ở nhà. Tăng cường phụ đạo học sinh yếu kém, tìm ra những chỗ học sinh đã bị hổng để phụ đạo. Điều đó đòi hỏi người giáo viên phải có lòng yêu nghề, yêu thương học sinh và phải có một lượng kiến thức vững chắc, có phương pháp truyền thụ phù hợp với từng đối tượng học sinh.
2. Phạm vi áp dụng của đề tài :
Đề tài “ Một số kinh nghiệm giảng dạy giải bài toán bằng cách lập phương trình” đã áp dụng cho môn toán lớp 8 ở trường THCS Đông Hưng A- huyện An Minh và có thể áp dụng cho tất cả các trường THCS khác.
3. Bài học kinh nghiệm, kiến nghị :
Trên đây là một số kinh nghiệm của bản thân tôi trong việc giảng dạy giải bài toán bằng cách lập phương trình ở chương trình toán lớp 8. Cùng với sự giúp đỡ tận tình của Ban Giám Hiệu nhà trường, của tổ chuyên môn, của các đồng nghiệp và học sinh tôi đã hoàn thành đề tài “ Một số kinh nghiệm giảng dạy giải bài toán bằng cách lập phương trình”. Tuy tôi đã có nhiều cố gắng nhưng chắc chắn rằng vẫn còn nhiều thiếu sót. Tôi xin trân trọng tất cả những ý kiến phê bình, đóng góp của cấp trên và đồng nghiệp để đề tài của tôi ngày càng hoàn thiện hơn và áp dụng rộng rãi trong ngành. Tôi xin chân thành cảm ơn! 
	Đông Hưng A, ngày 17 tháng 05 năm 2010
	 Người viết SKKN
	Nguyễn Thị Kim Mai
HỘI ĐỒNG CHẤM SÁNG KIẾN KINH NGHIỆM NHÀ TRƯỜNG
HỘI ĐỒNG THI ĐUA PHÒNG GD-ĐT THỐNG NHẤT XẾP LOẠI

File đính kèm:

  • docSKKN_giai_bai_toan_bang_cach_lap_PT.doc
Sáng Kiến Liên Quan